Log in

Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism

  • Article
  • Published:

From Nature Metabolism

View current issue Submit your manuscript

Abstract

Nutrient handling is an essential function of the gastrointestinal tract. Hormonal responses of small intestinal enteroendocrine cells (EECs) have been extensively studied but much less is known about the role of colonic EECs in metabolic regulation. To address this core question, we investigated a mouse model deficient in colonic EECs. Here we show that colonic EEC deficiency leads to hyperphagia and obesity. Furthermore, colonic EEC deficiency results in altered microbiota composition and metabolism, which we found through antibiotic treatment, germ-free rederivation and transfer to germ-free recipients, to be both necessary and sufficient for the development of obesity. Moreover, studying stool and blood metabolomes, we show that differential glutamate production by intestinal microbiota corresponds to increased appetite and that colonic glutamate administration can directly increase food intake. These observations shed light on an unanticipated host–microbiota axis in the colon, part of a larger gut–brain axis, that regulates host metabolism and body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1: Loss of colonic EECs results in hyperphagia and obesity.
Fig. 2: Colonic EECs regulate glucose homeostasis.
Fig. 3: Colonic EEC loss leads to intestinal dysbiosis and is associated with obesity.
Fig. 4: Colonic EECs control normal colonic motility and regulate the faecal metabolome.
Fig. 5: Dysbiosis in EECΔCol mice leads to hyperphagia and obesity.
Fig. 6: EEC loss is associated with a rise in faecal glutamate and is associated with hyperphagia.
Fig. 7: Bacterially derived colonic glutamate induces hyperphagia.

Similar content being viewed by others

Data availability

The published transcriptomics data for Extended Data Fig. 2 are available from the Gene Expression Omnibus under accession number GSE134202. The 16S rRNA data and metatranscriptomic data are deposited at the Sequence Read Archive (accession number PRJNA1063789, which includes 99 data files). Raw quantification data for metabolomics and l-glutamic acid measurements are deposited in the Science Data Bank (https://www.Scidb.cn/en/, entry identifier 31253.11.sciencedb.15521). To our knowledge, all information required to reanalyse the data reported here is publicly available. Source data are provided with this paper. Any additional data we inadvertently missed will be shared on reasonable request.

References

  1. Jaacks, L. M. et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 7, 231–240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chooi, Y. C., Ding, C. & Magkos, F. The epidemiology of obesity. Metabolism 92, 6–10 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. I. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crooks, B., Stamataki, N. S. & McLaughlin, J. T. Appetite, the enteroendocrine system, gastrointestinal disease and obesity. Proc. Nutr. Soc. 80, 50–58 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kiela, P. R. & Ghishan, F. K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 30, 145–159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spiller, R. C. Intestinal absorptive function. Gut 35, S5–S9 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong, J. M., de Souza, R., Kendall, C. W., Emam, A. & Jenkins, D. J. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Chey, W. Y. & Chang, T. M. Secretin: historical perspective and current status. Pancreas 43, 162–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15, 226–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Billing, L. J. et al. Single cell transcriptomic profiling of large intestinal enteroendocrine cells in mice—identification of selective stimuli for insulin-like peptide-5 and glucagon-like peptide-1 co-expressing cells. Mol. Metab. 29, 158–169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jenny, M. et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 21, 6338–6347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mellitzer, G. et al. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. J. Clin. Invest. 120, 1708–1721 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blot, F. et al. Gut microbiota remodeling and intestinal adaptation to lipid malabsorption after enteroendocrine cell loss in adult mice. Cell Mol. Gastroenterol. Hepatol. 15, 1443–1461 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanchez, J. G., Enriquez, J. R. & Wells, J. M. Enteroendocrine cell differentiation and function in the intestine. Curr. Opin. Endocrinol. Diabetes Obes. 29, 169–176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bethea, M., Bozadjieva-Kramer, N. & Sandoval, D. A. Preproglucagon products and their respective roles regulating insulin secretion. Endocrinology 162, bqab150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stojanovic, O., Miguel-Aliaga, I. & Trajkovski, M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat. Metab. 4, 1444–1458 (2022).

    Article  PubMed  Google Scholar 

  19. Duca, F. A., Waise, T. M. Z., Peppler, W. T. & Lam, T. K. T. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 12, 903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramakrishna, B. S. Role of the gut microbiota in human nutrition and metabolism. J. Gastroenterol. Hepatol. 28, 9–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Rowland, I. et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70, 567–590 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Hills, R. D. Jr. et al. Gut microbiome: profound implications for diet and disease. Nutrients 11, 1613 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Bastings, J., Venema, K., Blaak, E. E. & Adam, T. C. Influence of the gut microbiota on satiety signaling. Trends Endocrinol. Metab. 34, 243–255 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355, 270–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Burnicka-Turek, O. et al. INSL5-deficient mice display an alteration in glucose homeostasis and an impaired fertility. Endocrinology 153, 4655–4665 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Panaro, B. L. et al. Intestine-selective reduction of Gcg expression reveals the importance of the distal gut for GLP-1 secretion. Mol. Metab. 37, 100990 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tschop, M. et al. Physiology: does gut hormone PYY3–36 decrease food intake in rodents? Nature 430, 1–3 (2004).

  30. Batterham, R. L. et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Boggiano, M. M. et al. PYY3–36 as an anti-obesity drug target. Obes. Rev. 6, 307–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  PubMed  Google Scholar 

  33. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  34. Liu, B. N., Liu, X. T., Liang, Z. H. & Wang, J. H. Gut microbiota in obesity. World J. Gastroenterol. 27, 3837–3850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Israelyan, N. et al. Effects of serotonin and slow-release 5-hydroxytryptophan on gastrointestinal motility in a mouse model of depression. Gastroenterology 157, 507–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Maruvada, P., Leone, V., Kaplan, L. M. & Chang, E. B. The human microbiome and obesity: moving beyond associations. Cell Host Microbe 22, 589–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Rosenbaum, M., Knight, R. & Leibel, R. L. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol. Metab. 26, 493–501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Suarez-Zamorano, N. et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21, 1497–1501 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kameyama, K. & Itoh, K. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ. 29, 427–430 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Ye, L. et al. High fat diet induces microbiota-dependent silencing of enteroendocrine cells. eLife 8, e48479 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grosse, J. et al. Insulin-like peptide 5 is an orexigenic gastrointestinal hormone. Proc. Natl Acad. Sci. USA 111, 11133–11138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, Y. S. et al. Insulin-like peptide 5 is a microbially regulated peptide that promotes hepatic glucose production. Mol. Metab. 5, 263–270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lewis, J. E. et al. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 63, 1396–1407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zaykov, A. N., Gelfanov, V. M., Perez-Tilve, D., Finan, B. & DiMarchi, R. D. Insulin-like peptide 5 fails to improve metabolism or body weight in obese mice. Peptides 120, 170116 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Brooks, L. et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 6, 48–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Larraufie, P. et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 8, 74 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holmes, E., Wilson, I. D. & Nicholson, J. K. Metabolic phenoty** in health and disease. Cell 134, 714–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Arora, T. et al. Microbial regulation of the L cell transcriptome. Sci. Rep. 8, 1207 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sifuentes-Dominguez, L. F. et al. SCGN deficiency results in colitis susceptibility. eLife 8, e49910 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hinoi, T. et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 67, 9721–9730 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Feng, Y. et al. Sox9 induction, ectopic Paneth cells, and mitotic spindle axis defects in mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. Am. J. Pathol. 183, 493–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maitra, R. et al. Development and characterization of a genetic mouse model of KRAS mutated colorectal cancer. Int. J. Mol. Sci. 20, 5677 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quehenberger, O., Armando, A. M. & Dennis, E. A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta 1811, 648–656 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pendse, M. et al. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 12, e78558 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Obata, Y. et al. Neuronal programming by microbiota regulates intestinal physiology. Nature 578, 284–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Roosen, L. et al. Specific hunger- and satiety-induced tuning of guinea pig enteric nerve activity. J. Physiol. 590, 4321–4333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. **e, Z. et al. Gene set knowledge discovery with Enrichr. Curr. Protoc. 1, e90 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, H. & Peddada, S. D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 11, 3514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, J., Kim, M. S., Koh, A. Y., ** and Analysis Pipeline for metagenomics and metatranscriptomics studies. BMC Bioinformatics 17, 420 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim, J. et al. MetaPrism: a versatile toolkit for joint taxa/gene analysis of metagenomic sequencing data. G3 11, jkab046 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 7, 872–881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song, Y. et al. Gut-proglucagon-derived peptides are essential for regulating glucose homeostasis in mice. Cell Metab. 30, 976–986 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following individuals and core facilities for their invaluable assistance with many aspects of this project: R. Gordillo at the Mouse Metabolic Phenoty** Core; J. Shelton and the Histo Pathology Core; the staff at Dallas Children’s Health Histology Laboratory; J. Sudderth at the Metabolomics Core at CRI/UTSW; and C. Behrendt. We also thank G. Gradwohl (Istitut de Genetique et de Biologie Moleculaire et Cellulaire, France) and A. Leiter (University of Massachusetts) for sharing with us the Neurog3fl/fl model. We also thank our colleagues J. Horton, S. Winter, J. Pfeiffer, J. Zigman, P. Scherer, M. Mitsche, L. Hooper and R. DeBerardinis for important comments and feedback. This work was supported by the following sources: UTSWNORC grant under NIDDK/NIH award number P30DK127984, UTSW GF facility under R01 DK070855 and funding from the HHMI; the Pollock Family Center for Research in Inflammatory Bowel Disease (to E.B.); NIH through R01DK130957 (to E.B.), R01DK107733 (to E.B.), K08DK127197 (to L.S.-D.), T32DK007745 (to J.L.S.), UL1TR003163 (to J.G.M.), P01HL160487 (to J.G.M.), P01DK119130 (to J.K.E.), R01DK127274 (to J.K.E.), R01DK100659 (to J.K.E.), R01HG011035 (to X.Z.) and U01AI169298 (to X.Z.); the MMK foundation (to L.S.-D.); the Nancy Cain Marcus and Jeffrey A Marcus Scholar in Medical Research, in honour of B. S. Vowell (to Y.O.); Pew Scholars Program in Biomedical Science (to Y.O.); the Scientific and Technological Research Program of Chongqing Municipal Education Commission through KJQN2021043 (to S.T.); Natural Science Foundation of Chongqing through CSTB2022NSCQ-MSX1027 (to S.T.); National Science Fund for Distinguished Young Scholars through 32125012 (to D.J.); and Natural Science Foundation of China 92254302 (to D.J.).

Author information

Authors and Affiliations

Authors

Contributions

S.T., J.L.S., T.F.W., Q.L., T.F., S.C., C.P.B., A.L., Q.C., G.V., J.G.M., A.S., N.V., Y.O., H.B., L.L., G.Z. and L.S.-D. carried out experiments. J.K. and X.Z. assisted in data analysis (microbiome and metatranscriptomics). L.S.-D., S.T., T.-C.H., A.J., D.J., J.K.E. and E.B. conceived the experimental approach, oversaw experiments and wrote the manuscript. S.T., J.L.S., T.F.W. and L.S.-D. performed statistical analysis.

Corresponding authors

Correspondence to Shuai Tan, Luis Sifuentes-Dominguez or Ezra Burstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Hervé Blottière, Scott E Kanoski and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Yanina-Yasmin Pesch, in collaboration with the Nature Metabolism team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Generation and validation of EEC deficient mice.

(a) Schematic representation of the colonic EEC deficiency model. Created with BioRender.com. (b) qRT-PCR of Neurog3 gene along regions of the mouse bowel. Values are expressed as fold of the average of wild-type animals in the duodenum. Statistics derived from biological replicates (8 weeks of age, n = 3 per group). (c) Morphometric quantification of chromogranin A (CHGA) labeled cells along the intestinal epithelium. At least 10 confocal-acquired immunofluorescence images from each intestinal segment (duodenum, jejunum, ileum, cecum, proximal colon, distal colon) from 3 adult mice of either genotype were used for morphometric analysis (mice of 8 weeks of age). Chromogranin A (CHGA) positive cells were visually counted and normalized to the number of cells per 10 intestinal crypts. (d) Representative confocal images of immunofluorescent stained regions of the mouse intestine. (e) Representative light microscopy images of HE and Alcian blue stained regions of the mouse intestine (one representative animal in each group, n > 3 per group). Mean expression values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 2 Colonic EEC deletion is specific.

(a) Volcano plot of differentially expressed genes of bulk transcriptomics from colon of WT and EECΔCol mice and corresponding cellular enrichment in the Tabula muris database (only statistically significant cellular enrichments are shaded in blue, n = 3 mice). (b) qRT-PCR of Gcc along regions of the mouse bowel for the same samples shown in Extended Data Fig. 1b. Statistics derived from biological replicates. (c) qRT-PCR of Insl5 along regions of the mouse bowel for the same samples shown in Extended Data Fig. 1b. Statistics derived from biological replicates. (d) qRT-PCR of Pyy along regions of the mouse bowel for the same samples shown in Extended Data Fig. 1b. Statistics derived from biological replicates. (e) qRT-PCR of Muc2 (a goblet cell related marker) along regions of the mouse bowel for the same samples shown in Extended Data Fig. 1b. Statistics derived from biological replicates. Mean expression values are represented by bars and individual values by jitter plots. Values are expressed as fold of the average of wild-type animals in the duodenum. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 3 Metabolic cage analysis of EECΔCol and WT control.

(a) Heat production, (b) energy expenditure, (c) body weight and (d) total movement was examined in 10-week-old WT or EECΔCol mice (n = 6 mice). (e) Daily stool output and (f) stool bomb calorimetry from 11-week-old male WT and EECΔCol mice (n = 5 mice). (g) Concentration of individual fatty acids from stool of 16 and 23-week-old HFD-fed male EECΔCol or WT (aggregate of two repeats) mice (n = 7 WT or 8 EECΔCol mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 4 An inducible model of colonic EEC loss recapitulates the hyperphagia induced obesity phenotype.

(a) Schematic representation of the inducible colonic EEC deficiency model. Created with BioRender.com. (b) Representative genoty** gels of novel Neurog3 floxed allele. (c) Targeting strategy for generation of novel Neurog3 conditional floxed allele. (d) qRT-PCR of Neurog3 along regions of the mouse bowel (10 weeks of age, n = 3 mice). Statistics derived from biological replicates. (e) Body weight curve and (f) food intake for vehicle (Veh) or tamoxifen (TMX) treated iEECΔCol male mice on a regular diet (n = 8 mice). (g) Body weight curve and (h) food intake for iEECΔCol or tamoxifen (TMX) treated non-Cre control mice on a regular diet (n = 7 No Cre or 8 iEECΔCol mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons. *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 5 Glucose intolerance is accentuated by HFD in EECΔCol mice.

(a) Body weight of experimental mice at time of IP glucose administration (n = 5 mice). (b) IPGTT, (c) serum insulin and (d) serum GLP-1 determination following IP glucose load on 8-week-old HFD-fed male mice (n = 5 mice). (e) ITT and (f) body weight of 8-week-old HFD-fed male mice (n = 6 mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 6 Neurog3 heterozygous animals do not display metabolic phenotypes.

(a) Body weight curve of Neurog3fl/fl or Neurog3R/fl regular chow-fed male mice (n = 6 Neurog3fl/fl or 22 Neurog3R/fl mice). (b) Weight curve for 8-week-old Neurog3fl/fl or Neurog3R/fl HFD-fed (n = 5 Neurog3fl/fl or 16 Neurog3R/fl mice) and 16-week-old regular chow-fed male mice (n = 6 Neurog3fl/fl or 31 Neurog3R/fl mice). (c) IPGTT and body weight (n = 5 mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 7 Pyy deficiency is not associated with hyperphagia.

(a) Targeting strategy for generation of a Pyy knockout allele. (b) Representative genoty** gels of novel Pyy knockout allele. (c) PYY plasma levels after overnight fast from serum of 8-week-old genotype-segregated male mice of either genotype on regular chow mice (n = 10 Pyy+/+ or 11 Pyy-/- mice). (d) Weight curve for Pyy-/- or Pyy+/+ HFD-fed and regular chow-fed male mice and (e) average daily food intake at 8 weeks of age (n = 8 mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 8 Colonic EEC deficiency is associated with dysbiosis.

(a) Relative frequency of bacterial phyla as determined by 16 s sequencing from co-housed and genotype segregated WT and EECΔCol animals (n = 5 mice). (b) Volcano plots of differential abundance testing of fecal microbiota species (sequence variants) from WT and EECΔCol male mice at 4 (top, n = 8 WT or 5 EECΔCol mice) and 6–8 (bottom, n = 14 mice) weeks of age. Only statistically significant features are shaded in color. (c) Alpha diversity by feature abundance, ß-diversity PCoA by unweighed UNIFRAC (PERMANOVA p = 0.004), and volcano plots of differential abundance testing of sequence variants from iEECΔCol or tamoxifen (TMX) treated non-Cre control mice (13 weeks of age, n = 6 mice). (d) Representative microphotographs of HE-stained liver (left panels) and adipose tissue (right panels) of male EECΔCol mice under vehicle or antibiotic treatment, scale bar 100 µm (one representative animal in each group, n > 3 per group). (e) PCoA plots of ß-diversity analysis of FMT from donor (WT or iEECΔCol) and GF WT recipient mice (n = 5 mice). Respective PERMANOVA calculated p values are noted in the panels.

Source data

Extended Data Fig. 9 Female mice are protected from obesity.

(a) Weight curves of female WT and EECΔCol animals with HFD starting at 18 weeks of life (n = 6 mice). (b) PCoA of ß-diversity by unweighed UNIFRAC of 6–8 week old male (n = 14 mice) and female (n = 14 WT or 15 EECΔCol mice). PERMANOVA p = 0.001. (c) Volcano plot of differential abundance testing of fecal microbiota species (sequence variants) from WT and EECΔCol male and female mice at 6–8 weeks of age. (d) Volcano plot of differential abundance testing in different genders of EECΔCol mice. Only statistically significant features are shaded in color. Mean values and error bars representing ± s.e.m. are shown. Two-tailed unpaired t-test used for all pairwise comparisons.

Source data

Extended Data Fig. 10 Fecal L-glutamic acid is diet independent and associated with obesity.

(a) Fecal L-glutamic acid concentration from 13-week-old WT or iEECΔCol mice in fasting (6 hours) and refed conditions (1 hour after refeeding, n = 6 mice). (b) L-glutamate KEGG metabolic pathway. Differentially abundant KOs found through metatranscriptomics are highlighted in blue and red. (c) Weight of 10-week-old WT or ob/ob male mice (n = 5 mice). (d) Fecal L-glutamic acid concentration (n = 5 mice) and (e) morphometric quantification of chromogranin A (CHGA) labeled cells along the intestinal epithelium (n = 6 mice). Mean values are represented by bars and individual values by jitter plots. Error bars are ± s.e.m. Two-tailed unpaired t-test were used for pairwise comparisons.

Source data

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Tables 1–4.

Supplementary Video 1

The video for intestinal transit time, CMMC intestinal frequency and interval in WT and EECΔCol mice.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 4

Uncropped gels in Extended Data Fig. 4.

Source Datk Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 7

Uncropped gels in Extended Data Fig. 7.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Source Data Extended Data Fig. 10

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Santolaya, J.L., Wright, T.F. et al. Interaction between the gut microbiota and colonic enteroendocrine cells regulates host metabolism. Nat Metab 6, 1076–1091 (2024). https://doi.org/10.1038/s42255-024-01044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-024-01044-5

  • Springer Nature Limited

This article is cited by

Navigation