Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 41))

  • 1722 Accesses

Summary

This chapter explores the myriad of cytochromes involved in the photosynthetic process that generates the most energy and oxygen on Earth. All photosynthetic organisms rely on cytochromes to move electrons around the cell and drive the photosynthetic mechanism. Although cytochromes have many jobs in many environments, only a few types of cytochromes are involved in these electron transport chains. The hemes vary in axial ligation to meet the needs and reduction potential of each specific role. Some cytochromes diverge from the typical alpha helical structure, such as cytochrome f with beta sheet secondary structure. Whether in membranes or in the cytoplasm, diverse cytochromes keep photosynthesis pum** in many ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACIII:

Alternative Complex III

CEF:

Cyclic Electron Flow

CFX:

Chloroflexus aurantiacus

cyt:

Cytochrome

ETC:

Electron Transport Chain

FAP:

Filamentous Anoxygenic Phototroph

GSB:

Green Sulfur Bacteria

LEF:

Linear Electron Flow

OEC:

Oxygen Evolving Complex

PB:

Purple Bacteria

PSI:

Photosystem I

PSII:

Photosystem II

Qi :

Quinone Reduction Site

QO :

Quinone Oxidation Site

RC:

Reaction Center

RFX:

Roseiflexus castenholzii

References

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alric J, Pierre Y, Picot D, Lavergne J, Rappaport F (2005) Spectral and redox characterization of the heme ci of the cytochrome b6f complex. Proc Natl Acad Sci USA 102:15860–15865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambler RP, Bartsch RG, Daniel M, Kamen MD, McLellan L, Meyer TE, Van Beeumen J (1981) Amino acid sequences of bacterial cytochromes c’ and c-556. Proc Natl Acad Sci USA 78:6854–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axelrod HL, Okamura MY (2005) The structure and function of the cytochrome c2: reaction center electron transfer complex from Rhodobacter sphaeroides. Photosynth Res 85:101–114

    Article  CAS  PubMed  Google Scholar 

  • Axelrod H, Miyashita O, Okamura M (2009) Structure and function of the cytochrome c 2:reaction center complex from Rhodobacter sphaeroides. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple Phototrophic Bact. Springer, Dordrecht, pp 323–336

    Chapter  Google Scholar 

  • Azai C, Tsukatani Y, Miyamoto R, Kondo T, Murakami H, Itoh S, Oh-oka H (2008) Bifurcated electron donations from quinol oxidoreductase and soluble CycA to cytochrome cz of the photosynthetic reaction center complex in the green sulfur bacterium Chlorobium tepidum. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer, The Netherlands, pp 549–552

    Chapter  Google Scholar 

  • Azai C, Tsukatani Y, Itoh S, Oh-oka H (2010) C-type cytochromes in the photosynthetic electron transfer pathways in green sulfur bacteria and heliobacteria. Photosynth Res 104:189–199

    Article  CAS  PubMed  Google Scholar 

  • Bauer CE, Young DA, Marrs BL (1988) Analysis of the Rhodobacter capsulatus puf operon. Location of the oxygen-regulated promoter region and the identification of an additional puf-encoded gene. J Biol Chem 263:4820–4827

    CAS  PubMed  Google Scholar 

  • Baymann F, Nitschke W (2010) Heliobacterial Rieske/cytb complex. Photosynth Res 104:177–187

    Article  CAS  PubMed  Google Scholar 

  • Bell PD, **n Y, Blankenship RE (2009) Purification and characterization of cytochrome c(6) from Acaryochloris marina. Photosynth Res 102:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernroitner M, Tangl D, Lucini C, Furtmüller PG, Peschek GA, Obinger C (2009) Cyanobacterial cytochrome c(M): probing its role as electron donor for Cu(A) of cytochrome c oxidase. Biochim Biophys Acta 1787:135–143

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS, Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075

    Article  CAS  PubMed  Google Scholar 

  • Berry EA, De Bari H, Huang L-S (2013) Unanswered questions about the structure of cytochrome bc1 complexes. Biochim Biophys Acta Bioenerg

    Google Scholar 

  • Bialek W, Nelson M, Tamiola K, Kallas T, Szczepaniak A (2008) Deeply branching c6-like cytochromes of cyanobacteria. Biochemistry 47:5515–5522

    Article  CAS  PubMed  Google Scholar 

  • Bialek W, Szczepaniak A, Kolesinski P, Kallas T (2015) Cryptic c 6-like and c M cytochromes of cyanobacteria. In: Cramer WA, Kallas T (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Springer, Dordrecht

    Google Scholar 

  • Blankenship RE (2010) Early evolution of photosynthesis. Plant Physiol 154:434–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blankenship RE (2014) Molecular Mechanisms of Photosynthesis. Blackwell Science, Malden, MA

    Google Scholar 

  • Cao L, Bryant DA, Schepmoes AA, Vogl K, Smith RD, Lipton MS, Callister SJ (2012) Comparison of Chloroflexus aurantiacus strain J-10-fl proteomes of cells grown chemoheterotrophically and photoheterotrophically. Photosynth Res 110:153–168

    Article  CAS  PubMed  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    Article  CAS  PubMed  Google Scholar 

  • Choi PS, Grigoryants VM, Abruña HD, Scholes CP, Shapleigh JP (2005) Regulation and function of cytochrome c’ in Rhodobacter sphaeroides 2.4.3. J Bacteriol 187:4077–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke TA, Dennison V, Seward HE, Burlat B, Cole JA, Hemmings AM, Richardson DJ (2004) Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex. J Biol Chem 279:41333–41339

    Article  CAS  PubMed  Google Scholar 

  • Clarke TA, Cole JA, Richardson DJ, Hemmings AM (2007) The crystal structure of the pentahaem c-type cytochrome NrfB and characterization of its solution-state interaction with the pentahaem nitrite reductase NrfA. Biochem J 19–30

    Google Scholar 

  • Collins AM, **n Y, Blankenship RE (2009) Pigment organization in the photosynthetic apparatus of Roseiflexus castenholzii. Biochim Biophys Acta 1787:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Qian P, Tang Q, Bocian DF, Hunter CN, Blankenship RE (2010) Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry 49:7524–7531

    Article  CAS  PubMed  Google Scholar 

  • Cooley JW (2010) A structural model for across membrane coupling between the Qo and Qi active sites of cytochrome bc1. Biochim Biophys Acta 1797:1842–1848

    Article  CAS  PubMed  Google Scholar 

  • Coutinho IB, Xavier AV (1994) Inorganic microbial sulfur metabolism. Methods Enzymol 243:119–140

    Article  CAS  PubMed  Google Scholar 

  • Cramer W, Whitmarsh J (1977) Photosynthetic cytochromes. Annu Rev Plant Physiol 28:133–172

    Article  CAS  Google Scholar 

  • Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2004) Evolution of photosynthesis: time-independent structure of the cytochrome b6f complex. Biochemistry 43:5921–5929

    Article  CAS  PubMed  Google Scholar 

  • Cramer WA, Yan J, Zhang H, Kurisu G, Smith JL (2005) Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the “hors d”oeuvres hypothesis’ for assembly of the complex. Photosynth Res 85:133–143

    Article  CAS  PubMed  Google Scholar 

  • Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K (2013a) The mechanism of ubihydroquinone oxidation at the Q(o)-site of the cytochrome bc(1) complex. Biochim Biophys Acta. doi:10.1016/j.bbabio.2013.01.009

    PubMed Central  Google Scholar 

  • Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, Schulten K (2013b) The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim Biophys Acta Bioenerg 1827:1362–1377

    Article  CAS  Google Scholar 

  • Czapla M, Cieluch E, Borek A, Sarewicz M, Osyczka A (2013) Catalytically-relevant electron transferbetween two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b. Biochim Biophys Acta. doi:10.1016/j.bbabio.2013.02.007

    PubMed  PubMed Central  Google Scholar 

  • Daldal F, Mandaci S, Winterstein C, Myllykallio H, Duyck K, Zannoni D (2001) Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183:2013–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport HE, Hill R (1952) The preparation and some properties of cytochrome f. Proc R Soc B Biol Sci 139:327–345

    Article  CAS  Google Scholar 

  • De Lacroix de Lavalette A, Barucq L, Alric J, Rappaport F, Zito F (2009) Is the redox state of the ci heme of the cytochrome b6f complex dependent on the occupation and structure of the Qi site and vice versa? J Biol Chem 284:20822–20829

    Article  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Moreno I, Hulsker R, Skubak P, Foerster JM, Cavazzini D, Finiguerra MG, Díaz-Quintana A, …, Ubbink M (2014) The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy. Biochim Biophys Acta. doi:10.1016/j.bbabio.2014.03.009

    Google Scholar 

  • Dibrova DV, Cherepanov DA, Galperin MY, Skulachev VP, Mulkidjanian AY (2013) Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates. Biochim Biophys Acta 1827:1407–1427

    Article  CAS  PubMed  Google Scholar 

  • Dracheva SM, Drachev LA, Konstantinov AA, Semenov AY, Skulachev VP, Arutjunjan AM, Shuvalov VA, Zaberezhnaya SM (1988) Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction-centre complex from Rhodopseudomonas viridis. Eur J Biochem 171:253–264

    Article  CAS  PubMed  Google Scholar 

  • Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg 1837:63–72

    Article  CAS  Google Scholar 

  • Dutton PL, Petty KM, Bonner HS, Morse SD (1975) Cytochrome c2 and reaction center of Rhodospeudomonas spheroides Ga. membranes. Extinction coefficients, content, half-reduction potentials, kinetics and electric field alterations. Biochim Biophys Acta Bioenerg 387:536–556

    Article  CAS  Google Scholar 

  • Esser L, Elberry M, Zhou F, Yu CA, Yu L, **a D (2008) Inhibitor-complexed structures of the cytochrome bc1 from the photosynthetic bacterium Rhodobacter sphaeroides. J Biol Chem 283:2846–2857

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic Photosynthesis. Princeton University Press, Princeton, p 512

    Google Scholar 

  • Feyziyev Y, Deák Z, Styring S, Bernát G (2013) Electron transfer from Cyt b(559) and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. J Bioenerg Biomembr 45:111–120

    Article  CAS  PubMed  Google Scholar 

  • Fowler CF, Nugent NA, Fuller RC (1971) The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica. Proc Natl Acad Sci USA 68:2278–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, **n Y, Blankenship RE (2009) Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus. FEBS Lett 583:3275–3279

    Article  CAS  PubMed  Google Scholar 

  • Gao X, **n Y, Bell PD, Wen J, Blankenship RE (2010) Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. Biochemistry 49:6670–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Majumder EW, Kang Y, Yue H, Blankenship RE (2013) Functional analysis and expression of the mono-heme containing cytochrome c subunit of alternative complex III in Chloroflexus aurantiacus. Arch Biochem Biophys 535:197–204

    Article  CAS  PubMed  Google Scholar 

  • Gong X-M, Paddock ML, Okamura MY (2003) Interactions between cytochrome c2 and photosynthetic reaction center from Rhodobacter sphaeroides: changes in binding affinity and electron transfer rate due to mutation of interfacial hydrophobic residues are strongly correlated. Biochemistry 42:14492–14500

    Article  CAS  PubMed  Google Scholar 

  • Guerrero F, Zurita JL, Roncel M, Kirilovsky D, Ortega JM (2014) The role of the high potential form of the cytochrome b559: study of Thermosynechococcus elongatus mutants. Biochim Biophys Acta 1837:908–919

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, He Z, Luan S (2002) Functional relationship of cytochrome c(6) and plastocyanin in Arabidopsis. Nature 417:567–571

    Article  CAS  PubMed  Google Scholar 

  • Hara M (1998) Redox properties of an H-subunit-depleted photosynthetic reaction center from Rhodopseudomonas viridis. Biochim Biophys Acta Bioenerg 1363:199–208

    Article  CAS  Google Scholar 

  • Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci USA 110:4297–4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinnickel M, Golbeck JH (2007) Heliobacterial photosynthesis. Photosynth Res 92:35–53

    Article  CAS  PubMed  Google Scholar 

  • Hervas M, Navarro JA, Diaz A, Bottin H, De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from Plastocyanin and Cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34:11321–11326

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Hirano Y, Kimura Y, Oh-oka H, Miki K, Wang ZY (2009) Overexpression, characterization, and crystallization of the functional domain of cytochrome c(z) from Chlorobium tepidum. Photosynth Res 102:77–84

    Article  CAS  PubMed  Google Scholar 

  • Hill KL, Merchant S (1992) In vivo competition between plastocyanin and a copper-dependent regulator of the chlamydomonas reinhardtii cytochrome c6 gene. Plant Physiol 100:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill K, Li H, Singer J, Merchant S (1991) Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c6. Analysis of the kinetics and metal specificity of its copper-responsive expression. J Biol Chem 266:15060–15067

    CAS  PubMed  Google Scholar 

  • Hippler M (1999) Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of Algal plastocyanin and cytochrome c6. J Biol Chem 274:4180–4188

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Higuchi M, Azai C, Oh-Oka H, Miki K, Wang ZY (2010) Crystal structure of the electron carrier domain of the reaction center cytochrome c(z) subunit from green photosynthetic bacterium Chlorobium tepidum. J Mol Biol 397:1175–1187

    Article  CAS  PubMed  Google Scholar 

  • Hochkoeppler A, Jenney FJ, Lang S, Zannoni D, Daldal F (1995) Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration. J Bacteriol 177:608–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hochkoeppler A, Ciurli S, Kofod P, Venturoli G, Zannoni D (1997) On the role of cytochrome c8 in photosynthetic electron transfer of the purple non-sulfur bacterium Rhodoferax fermentans. Photosynth Res 53:13–21

    Article  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS (2006) The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57:13–22

    Article  CAS  PubMed  Google Scholar 

  • Howe CJ, Nimmo RH, Barbrook AC, Bendall DS (2015) Cytochrome c 6a of chloroplasts. In: Cramer WA, Kallas T (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Springer, Dordrecht

    Google Scholar 

  • Hunte C (2003) Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett 545:39–46

    Article  CAS  PubMed  Google Scholar 

  • Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10:91–100

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Jenney FE, Prince RC, Daldal F (1994) Roles of the soluble cytochrome c2 and membrane-associated cytochrome cy of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33:2496–2502

    Article  CAS  PubMed  Google Scholar 

  • Jones MR (2009) Structural plasticity of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple Phototrophic Bact. Springer, Dordrecht, pp 295–321

    Chapter  Google Scholar 

  • Kallas T (2012) Cytochrome b 6 f complex at the heart of energy transduction and rRedox signaling. In: Eaton-Rye JJ, Tripathy BC, Sharkey TD (eds) Photosynthesis. Springer, Dordrecht, pp 501–560

    Chapter  Google Scholar 

  • Kaminskaya OP, Shuvalov VA (2013) Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria. Biochim Biophys Acta 1827:471–483

    Article  CAS  PubMed  Google Scholar 

  • Kashey TS, Cowgill JB, McConnell MD, Flores M, Redding KE (2014) Expression and characterization of cytochrome c 553 from Heliobacterium modesticaldum. Photosynth Res. doi:10.1007/s11120-014-9982-y

    PubMed  Google Scholar 

  • Katoh H, Itoh S, Shen JR, Ikeuchi M (2001) Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 42:599–607

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Krogmann DW (1998) Photosynthetic cytochromes c In cyanobacteria, algae, and plants. Annu Rev Plant Physiol Plant Mol Biol 49:397–425

    Article  CAS  PubMed  Google Scholar 

  • Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Sugiura M, Cascio D, Desbois A, …, Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from the cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44:697–706

    Google Scholar 

  • Khalfaoui-Hassani B, Lanciano P, Lee D-W, Darrouzet E, Daldal F (2012) Recent advances in cytochrome bc(1): inter monomer electronic communication? FEBS Lett 586:617–621

    Article  CAS  PubMed  Google Scholar 

  • King JD, McIntosh CL, Halsey CM, Lada BM, Niedzwiedzki DM, Cooley JW, Blankenship RE (2013) Metalloproteins diversified: the auracyanins are a family of cupredoxins that stretch the spectral and redox limits of blue copper proteins. Biochemistry 52:8267–8275

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Roncel M, Boussac A, Wilson A, Zurita JL, Ducruet JM, Bottin H, …, Rutherford AW (2004) Cytochrome c550 in the cyanobacterium Thermosynechococcus elongatus: study of redox mutants. J Biol Chem 279:52869–52880

    Google Scholar 

  • Kramer D, Wolfgang N, Cooley JW (2009) The cytochrome bc 1 and related bc complexes: the rieske/cytochrome b complex as the functional core of a central electron/proton transfer complex. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple Phototrophic Bact. Springer, Dordrecht, pp 451–473

    Chapter  Google Scholar 

  • Lau MCY, Pointing SB (2009) Vertical partitioning and expression of primary metabolic genes in a thermophilic microbial mat. Extremophiles 13:533–540

    Article  PubMed  Google Scholar 

  • Lin X, Williams JC, Allen JP, Mathis P (1994) Relationship between rate and free energy difference for electron transfer from cytochrome c2 to the reaction center in Rhodobacter sphaeroides. Biochemistry 33:13517–13523

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Chen J, Huang RY, Weisz D, Gross ML, Pakrasi HB (2013) Mass spectrometry-based footprinting reveals structural dynamics of loop E of the chlorophyll-binding protein CP43 during photosystem II assembly in the cyanobacterium Synechocystis 6803. J Biol Chem 288:14212–14220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB (2014) MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci USA 111:4638–4643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder ELW, King JD, Blankenship RE (2013) Alternative complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochim Biophys Acta Bioenerg 1827:1383–1391

    Article  CAS  Google Scholar 

  • Margulis L (1992) Symbiosis in Cell Evolution, 2nd edn. W.H. Freeman, San Fransico

    Google Scholar 

  • Martinez SE, Huang D, Szczepaniak A, Cramer WA, Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2:95–105

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Donohue TJ (1995) Cytochromes, iron-sulfur, and copper proteins mediating electron transfer from the Cyt bc 1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Springer, Dordrecht, pp 725–745

    Google Scholar 

  • Meyer TE, Tollin G, Cusanovich MA, Freeman JC, Blankenship RE (1989) In vitro kinetics of reduction of cytochrome c554 isolated from the reaction center of the green phototrophic bacterium, Chloroflexus aurantiacus. Arch Biochem Biophys 272:254–261

    Article  CAS  PubMed  Google Scholar 

  • Moore GR, Pettigrew GW (1990) Cytochromes c: Evolutionary, Structural, and Physicochemical Aspects. Springer, Berlin/New York, p 478

    Book  Google Scholar 

  • Müh F, Zouni A (2015) Cytochrome b 559 in photosystem II. In: Cramer WA, Kallas T (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Springer, Dordrecht

    Google Scholar 

  • Mullineaux CW (2014) Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. Biochim Biophys Acta 1837:503–511

    Article  CAS  PubMed  Google Scholar 

  • Myllykallio H, Drepper F, Mathis P, Daldal F (1998) Membrane-anchored cytochrome cy mediated microsecond time range electron transfer from the cytochrome bc1 complex to the reaction center in Rhodobacter capsulatus. Biochemistry 37:5501–5510

    Article  CAS  PubMed  Google Scholar 

  • Nagashima S, Shimada K, Verméglio A, Nagashima KVP (2011) The cytochrome c8 involved in the nitrite reduction pathway acts also as electron donor to the photosynthetic reaction center in Rubrivivax gelatinosus. Biochim Biophys Acta 1807:189–196

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982

    Article  CAS  PubMed  Google Scholar 

  • Nogi T, Hirano Y, Miki K (2005) Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: the possible docking mechanisms during the electron transfer reaction. Photosynth Res 85:87–99

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H, Iwaki M, Itoh S (1995) Two molecules of cytochrome c function as the electron donors to P840 in the reaction center complex isolated from a green sulfur bacterium, Chlorobium tepidum. FEBS Lett 365:30–34

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1998) Membrane-bound cytochrome cz couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37:12293–12300

    Article  CAS  PubMed  Google Scholar 

  • Okkels JS, Kjaer B, Hansson O, Svendsen I, Møller BL, Scheller HV (1992) A membrane-bound monoheme cytochrome c551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 267:21139–21145

    CAS  PubMed  Google Scholar 

  • Ortega JM, Drepper F, Mathis P (1999) Electron transfer between cytochrome c2 and the tetraheme cytochrome c in Rhodopseudomonas viridis. Photosynth Res 59:147–157

    Article  CAS  Google Scholar 

  • Osyczka A, Cooley JW (2013) Protein conformational changes involved in the cytochrome bc1 complex catalytic cycle. Biochim Biophys Acta Bioenerg 1827:1340–1345

    Article  CAS  Google Scholar 

  • Parson WW (1968) The role of P870 in bacterial photosynthesis. Biochim Biophys Acta 153:248–259

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel R, Brudvig G (2014) Oxygen-evolving complex of photosystem II: correlating structure with spectroscopy. Phys Chem Chem Phys. doi:10.1039/c4cp00493k

    PubMed  Google Scholar 

  • Pospíšil P (2011) Enzymatic function of cytochrome b559 in photosystem II. J Photochem Photobiol B 104:341–347

    Article  PubMed  CAS  Google Scholar 

  • Prince RC, George GN (1995) Cytochrome f revealed. Trends Biochem Sci 20:217–218

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactants in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423:357–362

    Article  CAS  PubMed  Google Scholar 

  • Redding KE, Sarrou I, Rappaport F, Santabarbara S, Lin S, Reifschneider KT (2013) Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center. Photosynth Res. doi:10.1007/s11120-013-9957-4

    Google Scholar 

  • Refojo PN, Teixeira M, Pereira MM (2010) The alternative complex III of Rhodothermus marinus and its structural and functional association with caa(3) oxygen reductase. Biochim Biophys Acta–Bioenerg 1797:1477–1482

    Article  CAS  Google Scholar 

  • Refojo PN, Ribeiro MA, Calisto F, Teixeira M, Pereira MM (2013) Structural composition of alternative complex III: variations on the same theme. Biochim Biophys Acta Bioenerg 1827:1378–1382

    Article  CAS  Google Scholar 

  • Ritchie RJ, Runcie JW (2012) Photosynthetic electron transport in an anoxygenic photosynthetic bacterium Afifella (Rhodopseudomonas) marina measured using PAM fluorometry. Photochem Photobiol. doi:10.1111/j.1751-1097.2012.01241.x

    Google Scholar 

  • Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM (2012) Photosynthetic cytochrome c550. Biochim Biophys Acta 1817:1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, Moulisová V, Reksodipuro ADP, Gardiner AT, Fujii R, Hashimoto H, Isaacs NW, Cogdell RJ (2012) New insights into the structure of the reaction centre from Blastochloris viridis: evolution in the laboratory. Biochem J 442:27–37

    Article  CAS  PubMed  Google Scholar 

  • Russell HJ, Hardman SJO, Heyes DJ, Hough MA, Greetham GM, Towrie M, Hay S, Scrutton NS (2013) Modulation of ligand-heme reactivity by binding pocket residues demonstrated in cytochrome c’ over the femtosecond-second temporal range. FEBS J 280:6070–6082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2). FEBS Lett 586:603–616

    Article  CAS  PubMed  Google Scholar 

  • Sakurai H, Kusumoto N, Inoue K (1996) Function of the reaction center of green sulfur bacteria. Photochem Photobiol 64:5–13

    Article  CAS  Google Scholar 

  • Samyn B, Smet L (1996) A high‐potential soluble cytochrome C‐551 from the purple phototrophic bacterium chromatium vinosum is homologous to cytochrome C8 from denitrifying. Eur J Biochem 236:689–696

    Article  CAS  PubMed  Google Scholar 

  • Sanders C, Turkarslan S, Onder O, Frawley ER, Kranz RG, Koch HG, Daldal F (2009) Biogenesis of c-type Cytochromes and Cytochrome Complexes. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple Phototrophic Bact. Springer, Dordrecht, pp 407–423

    Chapter  Google Scholar 

  • Sarrou I, Khan Z, Cowgill J, Lin S, Brune D, Romberger S, Golbeck JH, Redding KE (2012) Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. Photosynth Res 111:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sattley WM, Blankenship RE (2010) Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum. Photosynth Res 104:113–122

    Article  CAS  PubMed  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2012) Cytochrome b559 and cyclic electron transfer within photosystem II. Biochim Biophys Acta 1817:66–75

    Article  CAS  PubMed  Google Scholar 

  • Simon J, Klotz MG (2013) Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim Biophys Acta 1827:114–135

    Article  CAS  PubMed  Google Scholar 

  • Sponholtz DL, Brautigan DL, Loach PA, Margoliash E (1976) Preparation of cytochrome c2 from Rhodospirillum rubrum. Anal Biochem 72:255–260

    Article  CAS  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot J-L, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426:413–418

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Lai T-L, Sugiura M, Shen JR, Boussac A (2013) Crystal structure at 1.5 Å resolution of the PsbV2 cytochrome from the cyanobacterium Thermosynechococcus elongatus. FEBS Lett 587:3267–3272

    Article  CAS  PubMed  Google Scholar 

  • Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, …, Blankenship RE (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334

    Google Scholar 

  • Tatsuhiko Y (1970) Solubilization, purification and properties of particulate hydrogenase from Desulfovibrio vulgaris. J Biochem 68:649–657

    Google Scholar 

  • Trubitsin BV, Mamedov MD, Semenov AY, Tikhonov AN (2014) Interaction of ascorbate with photosystem I. Photosynth Res

    Google Scholar 

  • Trumpower BL (1990) Cytochrome bc1 complexes of microorganisms. Microbiol Mol Biol Rev 54:101–129

    CAS  Google Scholar 

  • Tsukatani Y, Azai C, Kondo T, Itoh S, Oh-Oka H (2008) Parallel electron donation pathways to cytochrome c(z) in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochim Biophys Acta 1777:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Verméglio A, Li J, Schoepp-Cothenet B, Pratt N, Knaff DB (2002) The role of high-potential iron protein and cytochrome c 8 as alternative electron donors to the reaction center of Chromatium vinosum. Biochemistry 41:8868–8875

    Article  PubMed  CAS  Google Scholar 

  • Weber PC, Bartsch RG, Cusanovich MA, Hamlin RC, Howard A, Jordan SR, Kamen MD, …, Salemme FR (1980) Structure of cytochrome c’: a dimeric, high-spin haem protein. Nature 286:302–304

    Google Scholar 

  • Westerhuis WHJ (1996) Consequences for the organization of reaction center-light harvesting antenna 1 (LH1) core complexes of Rhodobacter sphaeroides arising from deletion of amino acid residues from the C terminus of the LH1 alpha polypeptide. J Biol Chem 271:3285–3292

    Article  PubMed  Google Scholar 

  • Whitmarsh J, Cramer WA (1979) Cytochrome f function in photosynthetic electron transport. Biophys J 26:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson A, Conlan B, Hillier W, Wydrzynski T (2011) The evolution of Photosystem II: insights into the past and future. Photosynth Res 107:71–86

    Article  CAS  PubMed  Google Scholar 

  • Worrall JAR, Luisi BF, Schlarb-Ridley BG, Bendall DS, Howe CJ (2008) Cytochrome c6A: discovery, structure and properties responsible for its low haem redox potential. Biochem Soc Trans 36:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • ** dynamics in the core complex of the filamentous photosynthetic bacterium Roseiflexus castenholzii. Photosynth Res. doi:10.1007/s11120-011-9669-6

    PubMed  Google Scholar 

  • Yamada M, Zhang H, Hanada S, Nagashima KV, Shimada K, Matsuura K (2005) Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol 187:1702–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanyushin MF, del Rosario MC, Bruno DC, Blankenship RE (2005) New class of bacterial membrane oxidoreductases. Biochemistry 44:10037–10045

    Article  CAS  PubMed  Google Scholar 

  • Yue H, Kang Y, Zhang H, Gao X, Blankenship RE (2012) Expression and characterization of the diheme cytochrome c subunit of the cytochrome bc complex in Heliobacterium modesticaldum. Arch Biochem Biophys 517:131–137

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Feng F, Medová H, Dean J, Koblížek M (2014) Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci USA 111:7795–7800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Majumder EL-W, Yue H, Blankenship RE, Gross ML (2014) Structural analysis of diheme cytochrome C by hydrogen-deuterium exchange mass spectrometry and homology modeling. Biochemistry 53:5619–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Olin Fellowship for Women for funding ELWM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Blankenship .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Majumder, E.LW., Blankenship, R.E. (2016). The Diversity of Photosynthetic Cytochromes. In: Cramer, W., Kallas, T. (eds) Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling. Advances in Photosynthesis and Respiration, vol 41. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7481-9_3

Download citation

Publish with us

Policies and ethics

Navigation