Log in

Overexpression, characterization, and crystallization of the functional domain of cytochrome c z from Chlorobium tepidum

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cytochrome c z is found in green sulfur photosynthetic bacteria, and is considered to be the only electron donor to the special pair P840 of the reaction center. It consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. Large scale expression of the C-terminal functional domain of the cytochrome c z (C-cyt c z) from the thermophilic bacterium Chlorobium tepidum has been achieved using the Escherichia coli expression system. The C-cyt c z expressed has been highly purified, and is stable at room temperature over 10 days of incubation for both reduced and oxidized forms. Spectroscopic measurements indicate that the heme iron in C-cyt c z is in a low-spin state and this does not change with the redox state. 1H-NMR spectra of the oxidized C-cyt c z exhibited unusually large paramagnetic chemical shifts for the heme methyl protons in comparison with those of other Class I ferric cytochromes c. Differences in the 1H-NMR linewidth were observed for some resonances, indicating different dynamic environments for these protons. Crystals of the oxidized C-cyt c z were obtained using ammonium sulfate as a precipitant. The crystals diffracted X-rays to a maximum resolution of 1.2 Å, and the diffraction data were collected to 1.3 Å resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C-cyt c z :

C-terminal domain of the cytochrome c z

Chl :

Chlorobium

CD:

Circular dichroism

MALDI–TOF:

Matrix-assisted laser desorption/ionization time-of-flight

MCD:

Magnetic circular dichroism

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

RC:

Reaction center

RR:

Resonance Raman

References

  • Arslan E, Schulz H, Zufferey R, Künzler P, Thöny-Meyer L (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb 3 oxidase in Escherichia coli. Biochem Biophys Res Commun 251:744–747

    Article  CAS  PubMed  Google Scholar 

  • Banci L, Bertini I, Cambria MT, Capozzi F, Dikiy A (1994) 1H one-dimensional and two-dimensional NMR studies of the ferricytochrome c 551 from Rhodocyclus gelatinosus. Eur J Biochem 219:663–669

    Article  CAS  PubMed  Google Scholar 

  • Blauer G, Screerama N, Woody RW (1993) Optical activity of hemoproteins in the Soret region. Circular dichroism of the heme undecapeptide of cytochrome c in aqueous solution. Biochemistry 32:6674–6679

    Article  CAS  PubMed  Google Scholar 

  • Desbois A (1994) Resonance Raman spectroscopy of c-type cytochromes. Biochimie 76:693–707

    Article  CAS  PubMed  Google Scholar 

  • Fee JA, Chen Y, Todaro TR, Bren KL, Patel KM, Hill MG, Gomez-Moran E, Loehr TM, Ai J, Thöny-Meyer L, Williams PA, Stura E, Sridhar V, McRee DE (2000) Integrity of Thermus thermophilus cytochrome c 552 synthesized by Escherichia coli expressing the host-specific cytochrome c maturation genes, ccmABCDEFGH: biological, spectral, and structural characterization of the recombinant protein. Protein Sci 9:2074–2084

    Article  CAS  PubMed  Google Scholar 

  • Feiler U, Hauska G (1995) The reaction center from green sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CD (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 665–685

    Google Scholar 

  • Hauska G, Schoedle T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Higuchi M, Azai C, Oh-oka H, Miki K, Wang Z-Y (2009) Crystal structure of the electron carrier domain of the reaction center cytochrome c z subunit from green photosynthetic bacterial Chlorobium tepidum (to be submitted)

  • Hsu M-C, Woody RW (1971) The origin of the heme Cotton effects in myoglobin and hemoglobin. J Am Chem Soc 93:3515–3525

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Morris IK, Singh JP, Smith KM, Spiro TG (1993) Complete assignment of cytochrome c resonance Raman spectra via enzymic reconstitution with isotopically labeled hemes. J Am Chem Soc 115:12446–12458

    Article  CAS  Google Scholar 

  • Hurt EC, Hauska G (1984) Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum. FEBS Lett 168:149–154

    Article  CAS  Google Scholar 

  • Jenney FE, Prince RC, Daldal F (1994) Roles of the soluble cytochrome c2 and membrane-associated cytochrome cy of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33:2496–2502

    Article  CAS  PubMed  Google Scholar 

  • Judd RC (2002) SDS-polyacrylamide gel electrophoresis of peptides. In: Walker JM (ed) The protein protocols handbook, 2nd edn. Humana Press, Totowa, pp 73–79

    Google Scholar 

  • Kitagawa T, Kyogoku Y, Iizuka T, Ikeda-Saito M, Yamanaka T (1975) Resonance Raman scattering from hemoproteins. J Biochem 78:719–728

    CAS  PubMed  Google Scholar 

  • Kusumoto N, Sétif P, Brettel K, Seo D, Sakurai H (1999) Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 38:12124–12137

    Article  CAS  PubMed  Google Scholar 

  • Lanir A, Yu N-T, Felton RH (1979) Conformational transitions and vibronic couplings in acid ferricytochrome c: a resonance Raman study. Biochemistry 18:1656–1660

    Article  CAS  PubMed  Google Scholar 

  • Lee D-W, Öztürk Y, Osyczka A, Cooley JW, Daldal F (2008) Cytochrome bc 1-c y fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components. J Biol Chem 283:13973–13982

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE (1996) Evolution and classification of c-type cytochromes. In: Scott RA, Mauk AG (eds) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito, pp 33–99

    Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  CAS  PubMed  Google Scholar 

  • Myer YP (1968) Conformation of cytochromes. J Biol Chem 243:2115–2122

    CAS  PubMed  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    CAS  PubMed  Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H, Iwaki M, Itoh S (1995) Two molecules of cytochrome c function as the electron donors to P840 in the reaction center complex isolated from a green sulfur bacterium, Chlorobium tepidum. FEBS Lett 365:30–34

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1997) Viscosity dependence of the electron transfer rate from bound cytochrome c to P840 in the photosynthetic reaction center of the green sulfur bacterium Chlorobium tepidum. Biochemistry 36:9267–9272

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1998) Membrane-bound cytochrome c z couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37:12293–12300

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Okkels JS, Kjær B, Hansson Ö, Svendsen I, Møller BL, Scheller HV (1992) A membrane-bound monoheme cytochrome c 551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 267:21139–21145

    CAS  PubMed  Google Scholar 

  • Okumura N, Shimada K, Matsuura K (1994) Photo-oxidation of membrane-bound and soluble cytochrome c in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41:125–134

    Article  CAS  Google Scholar 

  • Onodera S, Suzuki H, Shimada Y, Kobayashi M, Nozawa T, Wang Z-Y (2007) Overexpression and characterization of the Rhodobacter sphaeroides PufX membrane protein in Escherichia coli. Photochem Photobiol 83:139–144

    CAS  PubMed  Google Scholar 

  • Ookubo S, Nozawa T, Hatano M (1987) Iron(II) and iron(III) low and high spin complexes formed from p-nitrophenolatoiron(III) complex of protoporphyrin-IX-dimethylester in the presence of 1-methylimidazole: magnetic circular dichroism and 1H nuclear magnetic resonance spectroscopic studies. J Inorg Biochem 30:45–68

    Article  Google Scholar 

  • Othman S, Le Lirzin A, Desbois A (1994) Resonance Raman investigation of imidazole and imidazolate complexes of microperoxidase: characterization of the bis(histidine) axial ligation in c-type cytochromes. Biochemistry 33:15437–15448

    Article  CAS  PubMed  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Charles W, Carter J, Robert MS (eds) Methods in enzymology macromolecular crystallography part A, vol 276. Academic Press, New York, pp 307–326

    Chapter  Google Scholar 

  • Pielak GJ, Auld DS, Betz SF, Hilgen-Willis SE, Garcia LL (1996) Nuclear magnetic resonance studies of Class I cytochromes c. In: Scott RA, Mauk AG (eds) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito, pp 203–284

    Google Scholar 

  • Senn H, Wüthrich K (1983) Conformation of the axially bound ligands of the heme iron and electronic structure of heme c in the cytochromes c-551 from Pseudomonas mendocina and Pseudomonas stutzeri and cytochrome c 2 from Rhodospirillum rubrum. Biochim Biophys Acta 746:48–60

    CAS  Google Scholar 

  • Senn H, Keller RM, Wüthrich K (1980) Different chirality of the axial methionine in homologous cytochrome c determined by 1H NMR and CD spectroscopy. Biochem Biophys Res Commun 92:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Shokhirev NV, Walker FA (1998) The effect of axial ligand plane orientation on the contact and pseudocontact shifts of low-spin ferriheme proteins. J Biol Inorg Chem 3:581–594

    Article  CAS  Google Scholar 

  • Spaulding LD, Chang CC, Yu N-T, Felton RH (1975) Resonance Raman spectra of metallooctanaethylporphyrins. Structural probe of metal displacement. J Am Chem Soc 97:2517–2525

    Article  CAS  Google Scholar 

  • Spiro TG, Burke JM (1976) Protein control of porphyrin conformation. Comparison of resonance Raman spectra of heme proteins with mesoporphyrin IX analogues. J Am Chem Soc 98:5482–5489

    Article  CAS  PubMed  Google Scholar 

  • Spiro TG, Strekas TC (1974) Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J Am Chem Soc 96:338–345

    Article  CAS  PubMed  Google Scholar 

  • Spiro TG, Stong JD, Stein P (1979) Porphyrin core expansion and doming in heme proteins. New evidence from resonance Raman spectra of six-coordinate high-spin ion(III) hemes. J Am Chem Soc 101:2648–2655

    Article  CAS  Google Scholar 

  • Suzuki H, Hirano Y, Kimura Y, Takaichi S, Kobayashi M, Miki K, Wang Z-Y (2007) Purification, characterization and crystallization of the core complex from thermophilic purple sulfur bacterium Thermochromatium tepidum. Biochim Biophys Acta 1767:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Thomas PE, Ryan D, Levin W (1976) An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:168–176

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Azai C, Kondo T, Itoh S, Oh-oka H (2008) Parallel electron donation pathways to cytochrome cz in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochim Biophys Acta 1777(9):1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Turner DL (1993) Evaluation of 13C and 1H Fermi contact shifts in horse cytochrome c. The origin of the anti-Curie effect. Eur J Biochem 211:563–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. L. Thöny-Meyer for providing us with pEC86 and Dr. T. Kohzuma for the MALDI–TOF/MS measurement. This study has been performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2007G585), and was supported by grants-in-aid for Scientific Research on Priority Areas “Structures of Biological Macromolecular Assemblies” and by The Kurata Memorial Hitachi Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Hirano, Y., Kimura, Y. et al. Overexpression, characterization, and crystallization of the functional domain of cytochrome c z from Chlorobium tepidum . Photosynth Res 102, 77–84 (2009). https://doi.org/10.1007/s11120-009-9492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9492-5

Keywords

Navigation