Structure and Function of the Cytochrome c 2:Reaction Center Complex from Rhodobacter sphaeroides

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

In purple non-sulfur photosynthetic bacteria, a c-type heme protein, cytochrome (Cyt) c 2, serves as the electron donor to the reaction center (RC) which is the site of the initial photochemical electron transfer. The second order rate of electron transfer from Cyt c 2 to the RC is diffusion limited and optimized to facilitate electron transfer through the photosynthetic apparatus. This review summarizes the X-ray crystal structure of the Cyt c 2:RC complex from Rhodobacter (Rba.) sphaeroides and studies based on the structure that elucidate the molecular basis for the role of the complex in electron transfer. The structure of the complex shows the heme cofactor in van der Waals contact with the reaction center and in close proximity to the bacteriochlorophyll dimer, the primary electron donor. The binding interface region includes: a) a solvent-separated region with long-range electrostatic interactions between complementary charged residues on Cyt c 2 and the RC which play a role in protein docking and binding, and b) a small central region with short-range interactions, including hydrophobic, hydrogen bonding, and a cation-π interaction, which play a role in binding the Cyt in close contact to the RC surface to facilitate strong electronic coupling between cofactors for rapid inter-protein electron transfer. Both types of interactions contribute to the binding. However, the two types of interactions have markedly different effects on the electron transfer kinetics. The long-range electrostatic interactions change the second order rate constant by changing the association rate but not the electron transfer rate in the bound state. The short-range interactions do not affect the association rate but change the dissociation rate as well as the electron transfer rate in the bound state. The strength of the binding interactions is optimized to allow sufficiently fast dissociation of the oxidized Cyt c 2 that does not limit the rate of cyclic electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

BChl2 :

bacteriochlorophyll dimer

Blc. :

Blastochloris

Cyt c 2 :

cytochrome c 2

Rba. :

Rhodobacter

RC:

reaction center

Rps. :

Rhodopseudomonas

Rsp. :

Rhodospirillum

Tch. :

Thermochromatium

References

  • Abresch EC, Villalobos M, Paddock ML, Chang C and Okamura MY (2006) The importance of buried H-bonds on binding and electron transfer in the cytochrome c 2:reaction center complex. Biophysical Society Meeting Abstracts, Biophys J, Supplement, 503a, Abstract, 2400

    Google Scholar 

  • Adir N, Axelrod H, Beroza P, Isaacson R, Rongey S, Okamura M and Feher G (1996) Co-crystallization and characterization of the photosynthetic reaction center-cytochrome c 2 complex from Rhodobacter sphaeroides. Biochemistry 35: 2535–2547

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J, Michel H and Huber R (1986). Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc Natl Acad Sci USA 83: 8589–8593

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162–6166

    Article  PubMed  CAS  Google Scholar 

  • Aquino A, Beroza P, Reagan J and Onuchic J (1997) Estimating the effect of protein dynamics on electron transfer to the special pair in the photosynthetic reaction center. Chem Phys Lett 275: 181–187

    Article  CAS  Google Scholar 

  • Autenrieth F, Tajkhorshid E, Schulten K and Luthey-Schulten Z (2004) Role of water in transient cytochrome c 2 docking. J Phys Chem B 108: 20376–20387

    Article  CAS  Google Scholar 

  • Axelrod H and Okamura M (2005) The structure and function of the cytochrome c 2:reaction center electron transfer complex from Rhodobacter sphaeroides. Photosynth Res 85: 101–114

    Article  PubMed  CAS  Google Scholar 

  • Axelrod H, Feher G, Allen J, Chirino A, Day M, Hsu B and Rees D (1994) Crystallization and X-ray structure determination of cytochrome c 2 from Rhodobacter sphaeroides in three crystal forms. Acta Cryst D: Biol Crystallogr 50: 596–602

    Article  CAS  Google Scholar 

  • Axelrod HL, Abresch EC, Okamura MY, Yeh AP, Rees DC and Feher G (2002) X-ray structure determination of the cytochrome c 2:reaction center electron transfer complex from Rhodobacter sphaeroides. J Mol Biol 319: 501–515

    Article  PubMed  CAS  Google Scholar 

  • Bendall D (1996) Interprotein electron transfer. In: Bendall D (ed) Protein Electron Transfer, pp 43–68. Bios Scientific Publishers Ltd, Oxford

    Google Scholar 

  • Beratan D, Betts J and Onuchic J (1991) Protein electron transfer rates set by the bridging secondary and tertiary structure. Science 252: 1285–1288

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, London

    Book  Google Scholar 

  • Bogan A and Thorn K (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Caffrey MS, Bartsch RG and Cusanovich MA (1992) Study of the cytochrome c 2-reaction center interaction by site-directed mutagenesis. J Biol Chem 267: 6317–6321

    PubMed  CAS  Google Scholar 

  • Chance B and Smith L (1955) Respiratory pigments of Rhodospirillum rubrum. Nature 175: 803–806

    Article  PubMed  CAS  Google Scholar 

  • Chang C-H, Tiede D, Tang J, Smith U, Norris J and Schiffer M (1986) Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett 205: 82–86

    Article  PubMed  CAS  Google Scholar 

  • Crofts AR and Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185

    CAS  Google Scholar 

  • Deisenhofer J and Michel H (1989) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. EMBO J 8: 2149–2170

    PubMed  CAS  Google Scholar 

  • Devanathan S, Salamon Z, Tollin G, Fitch J, Meyer T and Cusanovich M (2004) Binding of oxidized and reduced cytochrome c 2 to photosynthetic reaction centers: Plasmon-waveguide resonance spectroscopy. Biochemistry 43: 16405–16415

    Article  PubMed  CAS  Google Scholar 

  • Devault D (1980) Quantum Mechanical Tunneling in Biological Systems. Q Rev Biophys 13: 387–564

    Article  PubMed  CAS  Google Scholar 

  • Drepper F, Dorlet P and Mathis P (1997) Cross-linked electron transfer complex between cytochrome c 2 and the photosynthetic reaction center of Rhodobacter sphaeroides. Biochemistry 36: 1418–1427

    Article  PubMed  CAS  Google Scholar 

  • Dutton PL and Prince RC (1978) Reaction center driven cytochrome interactions. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 525–570. Plenum Press, New York

    Google Scholar 

  • Duysens L (1952) Transfer of excitation energy in photosynthesis. Doctoral dissertation. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

  • Duysens L (1954) Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature 173: 692–693

    Article  CAS  Google Scholar 

  • Ermler U, Fritsch G, Buchanan S and Michel H (1994) Structure of the photosynthetic reaction center from Rhodobacter sphaeroides at 2.65 Å resolution — Cofactors and protein cofactor interactions. Structure 2: 925–936

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunneling. Proc Natl Acad Sci USA 71: 3640–3645

    Article  PubMed  CAS  Google Scholar 

  • Gallivan JP and Dougherty DA (1999) Cation-π interactions in structural biology. Proc Natl Acad Sci USA 96: 9459–9464

    Article  PubMed  CAS  Google Scholar 

  • Gerencsér L, Laczkó G and Maróti P (1999) Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover. Biochemistry 38: 16866–16875

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Paddock M and Okamura M (2003) Interactions between cytochrome c 2 and photosynthetic reaction center from Rhodobacter sphaeroides: Changes in binding affinity and electron transfer rate due to mutation of interfacial hydrophobic residues are strongly correlated. Biochemistry 42: 14492–14500

    Article  PubMed  CAS  Google Scholar 

  • Graige M, Feher G and Okamura M (1998) Conformational gating of the electron transfer reaction QA -QB → QAQB - in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci USA 95: 11679–11684

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Solmaz S and Lange C (2002) Electron transfer between yeast cytochrome bc 1 complex and cytochrome c: A structural analysis. Biochim Biophys Acta 1555: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Ke B, Chaney TH and Reed DW (1970) The electrostatic interaction between the reaction center bacteriochlorophyll derived from Rhodopseudomonas sphaeroides and mammalian cytochrome c and its effects on light activated electron transport. Biochim Biophys Acta 216: 373–383

    Article  PubMed  CAS  Google Scholar 

  • Kurlancheek W and Cave RJ (2006) Tunneling through weak interactions: A comparison of through-space, H-bond, and throughbond mediated tunneling. J Phys Chem 110: 14018–14028

    CAS  Google Scholar 

  • Larson J and Wraight C (2000) Preferential binding of equine ferricytochrome c to the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 39: 14822–14830

    Article  PubMed  CAS  Google Scholar 

  • Liang ZX, Kurnikov IV, Nocek JM, Mauk AG, Beratan DN and Hoffman BM (2004) Dynamic docking and electron-transfer between cytochrome b 5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes. J Am Chem Soc 126: 2785–2798

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Balabin I and Beratan D (2005) The nature of aqueous tunneling pathways between electron-transfer proteins. Science 310: 1311–1313

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Williams JC, Allen J and Mathis P (1994) Relationship between rate and free energy difference for electron transfer from cytochrome c 2 to the reaction center in Rhodobacter sphaeroides. Biochemistry 33: 13517–13523

    Article  PubMed  CAS  Google Scholar 

  • Long J, Durham B, Okamura M and Millett F (1989) Role of specific lysine residues in binding cytochrome c 2 to the Rhodobacter sphaeroides reaction center in optimal orientation for rapid electron transfer. Biochemistry 28: 6970–6974

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA (1964) Chemical and electrochemical electron transfer theory. Ann Rev Phys Chem 15: 155–196

    Article  CAS  Google Scholar 

  • McLendon G (1991) Control of biological electron transport via molecular recognition and binding: The ‘Velcro’ model. Struct Bond 75: 160–174

    Google Scholar 

  • Meyer T and Donohue T (1995) Cytochromes, Iron-sulfur, and copper proteins mediating electron transfer from the Cyt bc 1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 725–745. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Miyashita O, Okamura MY and Onuchic JN (2003a) Theoretical understanding of the interprotein electron transfer between cytochrome c 2 and the photosynthetic reaction center. J Phys Chem B 107: 1230–1241

    Article  CAS  Google Scholar 

  • Miyashita O, Onuchic JN and Okamura MY (2003b) Continuum electrostatic model for the binding of cytochrome c 2 to the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 42: 11651–11660

    Article  PubMed  CAS  Google Scholar 

  • Miyashita O, Onuchic J and Okamura M (2004) Transition state and encounter complex for fast association of cytochrome c 2with bacterial reaction center. Proc Natl Acad Sci USA 101: 16174–16179

    Article  PubMed  CAS  Google Scholar 

  • Miyashita O, Okamura, Onuchic J (2005) Interprotein electron transfer from cytochrome c 2 to photosynthetic reaction center: Tunneling across an aqueous interface. Proc Natl Acad Sci USA 102: 3558–3563

    Article  PubMed  CAS  Google Scholar 

  • Moser C and Dutton PL (1988). Cytochrome c and c 2 binding dynamics and electron transfer with photosynthetic reaction center protein and other integral membrane redox proteins. Biochemistry 27: 2450–2461

    Article  PubMed  CAS  Google Scholar 

  • Moser C and Dutton P (1992) Engineering protein structure for electron transfer in photosynthetic reaction centers. Biochim BiophysActa 1101: 171–176

    CAS  Google Scholar 

  • Nitschke W and Dracheva SM (1995) Reaction center associated cytochromes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration), pp 775–805. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Nogi T, Hirano Y and Miki K (2005) Structural and functional studies on the tetraheme cytochrome subunit and its electron donor proteins: The possible docking mechanisms during the electron transfer reaction. Photosynth Res. 85: 87–99

    Article  PubMed  CAS  Google Scholar 

  • Overfield RE, Wraight CA and Devault DC (1979) Microsecond photooxidation kinetics of cytochrome c 2 from Rhodopseudomonas sphaeroides: In vivo and solution studies. FEBS Lett. 105: 137–142

    Article  PubMed  CAS  Google Scholar 

  • Paddock M, Weber K, Chang C and Okamura M (2005) Interactions between cytochrome c 2 and the photosynthetic reaction center from Rhodobacter sphaeroides: The cation-π interaction. Biochemistry 44: 9619–9625

    Article  PubMed  CAS  Google Scholar 

  • Parson W (1968) The role of P870 in bacterial photosynthesis. Biochim Biophys Acta 153: 248–259

    Article  PubMed  CAS  Google Scholar 

  • Pelletier H and Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258: 1748–1755

    Article  PubMed  CAS  Google Scholar 

  • Pogorelov T, Autenrieth F, Roberts E and Luthey-Schulten Z (2007) Cytochrome c 2 exit strategy: Dissociation studies and evolutionary implications. J Phys Chem B 111: 618–634

    Article  PubMed  CAS  Google Scholar 

  • Prince RC, Cogdell RJ and Crofts AR (1974) The photo-oxidation of horse heart cytochrome c and native cytochrome c 2 by reaction centres from Rhodopseudomonas spheroides R-26. Biochim Biophys Acta 347: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Prytkova TR, Kurnikov IV and Beratan DN (2005) Ab initio based calculations of electron-transfer rates in metalloproteins. J Phys Chem B 109: 1618–1625

    Article  PubMed  CAS  Google Scholar 

  • Rosen D, Okamura MY and G Feher (1980) Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: Determination of number of binding sites and dissociation constants by equilibrium dialysis. Biochemistry 19: 5687–5692

    Article  PubMed  CAS  Google Scholar 

  • Rosen D, Okamura MY, Abresch EC, Valkirs GE and Feher G (1983) Interaction of cytochrome c with reaction centers of Rhodopseudomonas sphaeroides R-26: Localization of the binding site by chemical cross-linking and immunochemical studies. Biochemistry 22: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Tetreault M, Rongey SH, Feher G and Okamura M (2001) Interaction between cytochrome c 2 and the photosynthetic reaction center from Rhodobacter sphaeroides: Effects of charge-modifying mutations on binding and electron transfer. Biochemistry 40: 8452–8462

    Article  PubMed  CAS  Google Scholar 

  • Tetreault M, Cusanovich M, Meyer T, Axelrod H and Okamura M (2002) Double mutant studies identify electrostatic interactions that are important for docking cytochrome c 2 onto the bacterial reaction center. Biochemistry 41: 5807–5815

    Article  PubMed  CAS  Google Scholar 

  • Tiede D (1987) Cytochrome c orientation in electron transfer complexes with photosynthetic reaction centers of Rhodobacter sphaeroides and when bound to the surface of negatively charged membranes: Characterization by optical linear dichroism. Biochemistry 26: 397–410

    Article  CAS  Google Scholar 

  • Tiede DM and Chang CH (1988) The cytochrome-c binding surface of reaction centers from Rhodobacter sphaeroides. Isr J Chem 28: 183–191

    CAS  Google Scholar 

  • Tiede D and Dutton P (1993) Electron transfer between bacterial reaction centers andmobile c-type cytochromes. In: Deisenhofer J and Norris J (eds) The Photosynthetic Reaction Center, Vol 1, pp 258–288. Academic Press, San Diego

    Google Scholar 

  • Tiede D, Vashishta A and Gunner M (1993) Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes. Biochemistry 32: 4515–4531

    Article  PubMed  CAS  Google Scholar 

  • Tiede DM, Littrell K, Marone PA, Zhang R and Thiyagarajan P (2000) Solution structure of a biological bimolecular electron transfer complex: characterization of the photosynthetic reaction center-cytochrome c2 protein complex by small angle neutron scattering. J Appl Cryst 33: 560–564

    Article  CAS  Google Scholar 

  • van der Wal H, van Grondelle R, Millett F and Knaff D (1987) Oxidation of cytochrome c 2 and of cytochrome c by reaction centers of Rhodospirillum rubrum and Rhodobacter sphaeroides. The effect of ionic strength and of lysine modification on oxidation rates. Biochim Biophys Acta 893: 490–498

    Article  PubMed  Google Scholar 

  • Vernon L and Kamen M (1953) Studies on the metabolism of photosynthetic bacteria. XV. Photoautoxidation of ferrocytochrome c in extracts of Rhodospirillum rubrum. Arch Biochem Biophys 44: 298–311

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Axelrod, H., Miyashita, O., Okamura, M. (2009). Structure and Function of the Cytochrome c 2:Reaction Center Complex from Rhodobacter sphaeroides . In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_17

Download citation

Publish with us

Policies and ethics

Navigation