Structural Plasticity of Reaction Centers from Purple Bacteria

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

The purple bacterial reaction center has made major contributions to our understanding of photosynthetic energy transduction and biological electron transfer. A major element in this work has been alteration of the structure and/or composition of the reaction center through site-directed mutagenesis or biochemical treatments, and much of the usefulness of the reaction center as an experimental system has come from its (sometimes surprising) tolerance of significant changes in cofactor composition or amino acid sequence. The purpose of this chapter is to illustrate this structural plasticity, by documenting the extent to which the structure and composition of the reaction center has been altered in order to investigate details of its mechanism, or general principles pertaining to biological electron transfer. For the cofactors, the article looks at how and why individual cofactors have been replaced and the main outcomes of such studies. For the protein, the emphasis is placed on mutations involving large numbers of amino acids or single mutations that alter the cofactor composition of the complex. The chapter also considers the significant influence that changes in solvent (water) structure can have on reaction center structure and mechanism, attempts to construct chimeric reaction centers, and protein engineering aimed at introducing new functionality into the reaction center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

BA :

A-side monomeric BChl

BB :

B-side monomeric BChl

BChl:

bacteriochlorophyll

Blc. :

Blastochloris

BPhe:

bacteriopheophytin

Chl:

chlorophyll

EmP/P+ :

mid-point redox potential of P/P+

HA :

A-side BPhe

HB :

B-side BPhe

LDAO:

lauryldimethylamine oxide

LH1:

core light harvesting complex

LH2:

peripheral light harvesting complex

P:

primary electron donor

PA :

A-side P BChl

PB :

B-side P BChl

QA :

primary acceptor quinone

QB :

secondary (dissociable) acceptor quinone

Rba. :

Rhodobacter

RC:

reaction center

References

  • Addlesee HA and Hunter CN (1999) Physical map** and functional assignment of the geranylgeranyl-bacteriochlorophyll reductase gene, bchP, of Rhodobacter sphaeroides. J Bact 181: 7248–7255

    PubMed  CAS  Google Scholar 

  • Addlesee HA and Hunter CN (2002) Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. J Bact 184: 1578–1586

    PubMed  CAS  Google Scholar 

  • Agalidis I, Lutz M and Reiss-Husson F (1980) Binding of carotenoids on reaction centers from Rhodopseudomonas sphaeroides R-26. Biochim Biophys Acta 589: 264–274

    PubMed  CAS  Google Scholar 

  • Albouy D, Kuhn M, Williams JC, Allen JP, Lubitz W and Mattioli TA (1997) Fourier transform Raman investigation of the electronic structure and charge localization in a bacteriochlorophyll-bacteriopheophytin dimer of reaction centers from Rhodobacter sphaeroides. Biochim Biophys Acta-Bioenerg 1321: 137–148

    CAS  Google Scholar 

  • Allen JP, Williams JC, Graige MS, Paddock ML, Labahn A, Feher G and Okamura MY (1998) Free energy dependence of the direct charge recombination from the primary and secondary quinones in reaction centers from Rhodobacter sphaeroides. Photosynth Res 55: 227–233

    CAS  Google Scholar 

  • Alric J, Cuni A, Maki H, Nagashima KVP, Verméglio A and Rappaport F (2004) Electrostatic interaction between redox cofactors in photosynthetic reaction centers. J Biol Chem 279: 47849–47855

    PubMed  CAS  Google Scholar 

  • Alric J, Lavergne J, Rappaport F, Verméglio A, Matsuura K, Shimada K and Nagashima KVP (2006) Kinetic performance and energy profile in a roller coaster electron transfer chain: A study of modified tetraheme-reaction center constructs. J Am Chem Soc 128: 4136–4145

    PubMed  CAS  Google Scholar 

  • Arlt T, Dohse B, Schmidt S, Wachtveitl J, Laussermair E, Zinth W and Oesterhelt D (1996) Electron transfer dynamics of Rhodopseudomonas viridis reaction centers with a modified binding site forthe accessory bacteriochlorophyll. Biochemistry 35: 9235–9244

    PubMed  CAS  Google Scholar 

  • Bautista JA, Chynwat V, Cua A, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR and Frank HA (1998) The spectroscopic and photochemical properties of locked-15,15′-cis-spheroidene in solution and incorporated into the reaction center of Rhodobacter sphaeroides R-26.1. Photosynth Res 55: 49–65

    CAS  Google Scholar 

  • Bollivar DW, Wang SJ, Allen JP and Bauer CE (1994) Molecular-genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis — characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterifiedbacteriochlorophyll a. Biochemistry 33: 12763–12768

    PubMed  CAS  Google Scholar 

  • Borovykh IV, Dzuba SA, Proskuryakov II, Gast P and Hoff AJ (1998) Light-induced structural changes in photosynthetic reaction centers studied by ESEEM of spin-correlated D+QA - radical pairs. Biochim Biophys Acta-Bioenerg 1363: 182–186

    CAS  Google Scholar 

  • Borovykh IV, Gast P and Dzuba SA (2005) ‘Glass transition’ near 200 K in the bacterial photosynthetic reaction center protein detected by studying the distances in the transient P+QA - radical pair. J Phys Chem B 109: 7535–7539

    PubMed  CAS  Google Scholar 

  • Boucher F, van der Rest M and Gingras G (1977) Structure and function of carotenoids in photoreaction center from Rhodospirillum rubrum. Biochim Biophys Acta 461: 339–357

    PubMed  CAS  Google Scholar 

  • Breton J (1997) Efficient exchange of the primary quinone acceptor QA in isolated reaction centers of Rhodopseudomonas viridis. Proc Natl Acad Sci USA 94: 11318–11323

    PubMed  CAS  Google Scholar 

  • Breton J, Boullais C, Burie JR, Nabedryk E and Mioskowski C (1994a) Binding-sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy — assignment of the interactions of each carbonyl of QA in Rhodobacter sphaeroides using site-specific C13-labeled ubiquinone. Biochemistry 33: 14378–14386

    PubMed  CAS  Google Scholar 

  • Breton J, Burie J-R, Berthomieu C, Berger G and Nabedryk EC (1994b) The binding-sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: Assignment binding of the QA vibrations in Rhodobacter-sphaeroides using 18O- or 13C-labeled ubiquinone and vitamin K1. Biochemistry 33: 4953–4965

    PubMed  CAS  Google Scholar 

  • Breton J, Burie JR, Boullais C, Berger G and Nabedryk E (1994c) Binding-sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy — binding of chainless symmetrical quinones to the QA site of Rhodobacter sphaeroides. Biochemistry 33: 12405–12415

    PubMed  CAS  Google Scholar 

  • Brudler R, De Groot HJM, van Liemt WBS, Steggerda WF, Esmeijer R, Gast P, Hoff AJ, Lugtenburg J and Gerwert K (1994) Asymmetric binding of the 1−C=0 and 4−C=0 groups of QA in Rhodobacter sphaeroides R26 reaction centers monitored by Fourier-transform infrared-spectroscopy using site-specific isotopically labeled ubiquinone-10. EMBO J 13: 5523–5530

    PubMed  CAS  Google Scholar 

  • Bylina EJ and Youvan DC (1988) Directed mutations affecting spectroscopic and electron-transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85: 7226–7230

    PubMed  CAS  Google Scholar 

  • Calvo R, Abresch EC, Bittl R, Feher G, Hofbauer W, Isaacson RA, Lubitz W, Okamura MY and Paddock ML (2000) EPR study of the molecular and electronic structure of the semiquinone biradical QA -• Qb -• in photosynthetic reaction centers from Rhodobacter sphaeroides. J Am Chem Soc 122: 7327–7341

    CAS  Google Scholar 

  • Calvo R, Isaacson RA, Paddock ML, Abresch EC, Okamura MY, Maniero AL, Brunei LC and Feher G (2001) EPR study of the semiquinone biradical QA -• Qb -• in photosynthetic reaction centers of Rhodobacter sphaeroides at 326 GHz: Determination of the exchange interaction Jo. J Phys Chem B 105: 4053–4057

    CAS  Google Scholar 

  • Calvo R, Isaacson RA, Abresch EC, Okamura MY and Feher G (2002) Spin-lattice relaxation of coupled metal-radical spindimers in proteins: Application to Fe2+-cofactor (QA -•, Qb -•, Θ-•) dimers in reaction centers from photosynthetic bacteria. Biophys J 83: 2440–2456

    PubMed  CAS  Google Scholar 

  • Camara-Artigas A, Magee C, Goetsch A and Allen JP (2002) The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 Ã…ngstrom resolution. Photosynth Res 74: 87–93

    PubMed  CAS  Google Scholar 

  • Chadwick BW and Frank HA (1986) Electron-spin-resonance studies of carotenoids incorporated into reaction centers of Rhodobacter sphaeroides R26.1. Biochim Biophys Acta 851: 257–266

    CAS  Google Scholar 

  • Chen X-Y, Yurkov V, Paddock ML, Okamura MY and Beatty JT (1998) A puhA gene deletion and plasmid complementation system for facile site directed mutagenesis studies of the reaction center H protein of Rhodobacter sphaeroides. Photosynth Res 55: 369–373

    CAS  Google Scholar 

  • Chuang JI, Boxer SG, Holten D, Kirmaier C (2006) High yield of M-side electron transfer in mutants of Rhodobacter capsulatus reaction centers lacking the L-side bacteriopheophytin. Biochemistry 45: 3845–3851

    PubMed  CAS  Google Scholar 

  • Clayton RK and Smith C (1960) Rhodopseudomonas spheroides: High catalase and blue-green double mutants. Biochem Biophys Res Commun 3: 143–145

    PubMed  CAS  Google Scholar 

  • Coleman WJ and Youvan DC (1990) Spectroscopic analysis of genetically modified photosynthetic reaction centers. Ann Rev Biophys Biophys Chem 19: 333–367

    Google Scholar 

  • Coleman WJ and Youvan DC (1993) Atavistic reaction center. Nature 366: 517–518

    PubMed  CAS  Google Scholar 

  • Czarnecki K, Chen L, Diers JR, Frank HA, Bocian DF (2006) Low-frequency resonance Raman studies of the H(M202)G cavity mutant of bacterial photosynthetic reaction centers. Photosynth Res 88: 31–41

    PubMed  CAS  Google Scholar 

  • Davidson E and Cogdell RJ (1981) The polypeptide composition of the B850 light-harvesting pigment-protein complex from Rhodopseudomonas sphaeroides, R26.1. FEBS Letts 132: 81–84

    CAS  Google Scholar 

  • Debus RJ, Feher G and Okamura MY (1985) LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26 — characterization and reconstitution with the H-subunit. Biochemistry 24: 2488–2500

    CAS  Google Scholar 

  • Debus RJ, Feher G and Okamura MY (1986) Iron-depleted reaction centers from Rhodopseudomonas sphaeroides R-26.1 — characterization and reconstitution with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. Biochemistry 25: 2276–2287

    PubMed  CAS  Google Scholar 

  • Deisenhofer J and Norris JR (eds) (1993) The Photosynthetic Reaction Center. Vols 1 and 2. Academic Press, San Diego

    Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos. http://pymol.sourceforge.net/ (July 06, 2007)

    Google Scholar 

  • Eastman JE, Taguchi AKW, Lin S, Jackson JA and Woodbury NW (2000) Characterization of a Rhodobacter capsulatus reaction center mutant that enhances the distinction between spectral forms of the initial electron donor. Biochemistry 39: 14787–14798

    PubMed  CAS  Google Scholar 

  • Edens GJ, Gunner MR, Xu Q and Mauzerall D (2000) The enthalpy and entropy of reaction for formation of P+Qa - from excited reaction centers of Rhodobacter sphaeroides. J Am Chem Soc 122: 1479–1485

    CAS  Google Scholar 

  • Encyclopaedia Britannica Online. http://www.britannica.com (July 27, 2006)

  • Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J and Frank HA (1997) Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of Ï€-electron conjugation. Photochem Photobiol 66: 97–104

    PubMed  CAS  Google Scholar 

  • Finkele U, Lauterwasser C, Struck A, Scheer H and Zinth W (1992) Primary electron transfer kinetics in bacterial reaction centers with modified bacteriochlorophylls at the monomeric sites BA,B. Proc Natl Acad Sci USA 89: 9514–9518

    PubMed  CAS  Google Scholar 

  • Flores M, Isaacson R, Abresch E, Calvo R, Lubitz W and Feher G (2006) Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: I. Identification of the ENDOR lines associated with the hydrogen bonds to the primary quinone Qa •-. Biophys J 90: 3356–3362

    PubMed  CAS  Google Scholar 

  • Foloppe N, Breton J and Smith JC (1995) Conformational energetics of a partially symmetrized photosynthetic reaction center. Chem Phys Letts 242: 238–243

    CAS  Google Scholar 

  • Frank HA, Chadwick BW, Taremi S, Kolaczkowski S and Bowman MK (1986) Singlet and triplet absorption-spectra of carotenoids bound in the reaction centers of Rhodopseudomonas sphaeroides R26. FEBS Letts 203: 157–163

    CAS  Google Scholar 

  • Frank HA, Chynwat V, Hartwich G, Meyer M, Katheder I and Scheer H (1993) Carotenoid triplet-state formation in Rhodobacter sphaeroides R-26 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene. Photosynth Res 37: 193–203

    CAS  Google Scholar 

  • Frank HA, Chynwat V, Posteraro A, Hartwich G, Simonin I and Scheer H (1996) Triplet state energy transfer between the primary donor and the carotenoid in Rhodobacter sphaeroides R-26.1 reaction centers exchanged with modified bacteriochlorophyll pigments and reconstituted with spheroidene. Photochem Photobiol 64: 823–831

    PubMed  CAS  Google Scholar 

  • Franken EM, Shkuropatov AY, Francke C, Neerken S, Gast P, Shuvalov VA, Hoff AJ and Aartsma TJ (1997a) Reaction centers of Rhodobacter sphaeroides R-26 with selective replacement of bacteriopheophytin by pheophytin a. I. Characterisation of steady-state absorbance and circular dichroism, and of the P+QA - state. Biochim Biophys Acta 1319: 242–250

    CAS  Google Scholar 

  • Franken EM, Shkuropatov AY, Francke C, Neerken S, Gast P, Shuvalov VA, Hoff AJ and Aartsma TJ (1997b) Reaction centers of Rhodobacter sphaeroides R-26 with selective replacement of bacteriopheophytin by pheophytin a. II. Temperature dependence of the quantum yield of P+QA - and 3P formation. Biochim Biophys Acta 1321: 1–9

    CAS  Google Scholar 

  • Fukushima A, Matsuura K, Shimada K and Satoh T (1988) Reaction center-B870 pigment protein complexes with bound cytochromes c-555 and c-551 from Rhodocyclus gelatinosus. Biochim Biophys Acta 933: 399–405

    CAS  Google Scholar 

  • Gardiner AT, Zech SG, MacMillan F, Käss H, Bittl R, Schlodder E, Lendzian F, and Lubitz W (1999) Electron paramagnetic resonance studies of zinc-substituted reaction centers from Rhodopseudomonas viridis. Biochemistry 38: 11773–11787

    PubMed  CAS  Google Scholar 

  • Gebhard R, van der Hoef K, Violette CA, de Groot HJM, Frank HA and Lugtenburg J (1991) C13 magic angle spinning NMR evidence for a 15,15′-Z configuration of the spheroidene chromophore in the Rhodobacter sphaeroides reaction center — synthesis of C13-labeled and H2-labeled spheroidenes. Pure Applied Chem 63: 115–122

    CAS  Google Scholar 

  • Giangiacomo KM and Dutton PL (1989) In photosynthetic reaction centers, the free-energy difference for electron-transfer between quinones bound at the primary and secondary quinonebinding sites governs the observed secondary site specificity. Proc Natl Acad Sci USA 86: 2658–2662

    PubMed  CAS  Google Scholar 

  • Goldsmith JO, King B and Boxer SG (1996) Mg coordination by amino acid side chains is not required for assembly and function of the special pair in bacterial photosynthetic reaction centers. Biochemistry 35: 2421–2428

    PubMed  CAS  Google Scholar 

  • Gopher A, Blatt Y, Schonfeld M, Okamura MY, Feher G and Montai M (1985) The effect of an applied electric field on the charge recombination kinetics in reaction centers reconstituted in planar lipid bilayers. Biophys. J. 48: 311–320

    PubMed  CAS  Google Scholar 

  • Graige MS, Paddock ML, Bruce JM, Feher G and Okamura MY (1996) Mechanism of proton-coupled electron transfer for quinone QB reduction in reaction centers of Rb sphaeroides. J Am Chem Soc 118: 9005–9016

    CAS  Google Scholar 

  • Graige MS, Feher G and Okamura MY (1998) Conformational gating of the electron transfer reaction QA -• Qb -• → QAQb -• in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. Proc Natl Acad Sci USA 95: 11679–11684

    PubMed  CAS  Google Scholar 

  • Graige MS, Paddock ML, Feher G and Okamura MY (1999) Observation of the protonated semiquinone intermediate in isolated reaction centers from Rhodobacter sphaeroides: Implications for the mechanism of electron and proton transfer in proteins. Biochemistry 38: 11465–11473

    PubMed  CAS  Google Scholar 

  • Gunner MR and Dutton PL (1989) Temperature and ΔG° dependence of the electron-transfer from Bph- to QA in reaction center protein from Rhodobacter sphaeroides with different quinones as QA. J Am Chem Soc 111: 3400–3412

    CAS  Google Scholar 

  • Gunner MR, Robertson DE and Dutton PL (1986) Kinetic-studies on the reaction center protein from Rhodopseudomonas sphaeroides — the temperature and free-energy dependence of electron-transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer. J Phys Chem 90: 3783–3795

    CAS  Google Scholar 

  • Hara M, Kaneko T, Nakamura C, Asada Y and Miyake J (1998) Redox properties of an H-subunit-depleted photosynthetic reaction center from Rhodopseudomonas viridis. Biochim Biophys Acta-Bioenerg 1363: 199–208

    CAS  Google Scholar 

  • Hartwich G, Friese M, Scheer H, Ogrodnik A and Michel-Beyerle ME (1995a) Ultrafast internal conversion in 132-OH-Ni-bacteriochlorophyll in reaction centers of Rhodobacter sphaeroides R26. Chem Phys 197: 423–434

    CAS  Google Scholar 

  • Hartwich G, Scheer H, Aust V, Angerhofer A (1995b) Absorption and ADMR studies on bacterial photosynthetic reaction centers with modified pigments. Biochim Biophys Acta-Bioenerg 1230: 97–113

    Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1995a) Characterization of bacterial reaction centers having mutations of aromatic residues in the binding-site of the bacteriopheophytin intermediary electron carrier. Biochemistry 34: 5294–5302

    PubMed  CAS  Google Scholar 

  • Heller BA, Holten D and Kirmaier C (1995b) Control of electron-transfer between the L-side and M-side of photosynthetic reaction centers. Science 269: 940–945

    PubMed  CAS  Google Scholar 

  • Hermes S, Bremm O, Garczarek F, Derrien V, Liebisch P, Loja P, Sebban P, Gerwert K and Haumann M (2006) A time-resolved iron-specific X-ray absorption experiment yields no evidence for an Fe2+ → Fe3+ transition during QA → QB electron transfer in the photosynthetic reaction center. Biochemistry 45: 353–359

    PubMed  CAS  Google Scholar 

  • Hoff AJ and Deisenhofer J (1997) Photophysics of photosynthesis: Structure and spectroscopy of reaction centres of purple bacteria. Physics Reports-Review Section of Physics Letters 287: 2–247

    Google Scholar 

  • Huber H, Meyer M, Scheer H, Zinth W and Wachtveitl J (1998) Temperature dependence of the primary electron transfer reaction inpigment-modified bacterial reaction centers. Photosynth Res 55: 153–162

    CAS  Google Scholar 

  • Hucke O, Schmid R and Labahn A (2002) Exploring the primary electron acceptor QA-site of the bacterial reaction center from Rhodobacter sphaeroides — binding mode of vitamin K derivatives. Eur J Biochem 269: 1096–1108

    PubMed  CAS  Google Scholar 

  • Hulsebosch RJ, Borovykh IV, Paschenko SV, Gast P and Hoff AJ (1999) Radical pair dynamics and interactions in quinone-reconstituted photosynthetic reaction centers of Rb. sphaeroides R26: Amultifrequencymagneticresonance study. J Phys Chem B 103: 6815–6823

    CAS  Google Scholar 

  • Hunter CN (1995) Genetic manipulation of the antenna complexes of purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 473–501. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jackson JA, Lin S, Taguchi AKW, Williams JC, Allen JP and Woodbury NW (1997) Energy transfer in Rhodobacter sphaeroides reaction centers with the initial electron donor oxidized or missing. J Phys Chem B 101: 5747–5754

    CAS  Google Scholar 

  • Jones MR, Fowler GJS, Gibson LCD, Grief GG, Olsen JD, Crielaard W and Hunter CN (1992a) Construction of mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction centre, LH1 and LH2 genes. Mol Microbiol 6: 1173–1184

    PubMed  CAS  Google Scholar 

  • Jones MR, Visschers RW, van Grondelle R and Hunter CN (1992b) Construction and characterisation of a mutant of Rhodobacter sphaeroides with the reaction centre as the sole pigment-protein complex. Biochemistry 31: 4458–4465

    PubMed  CAS  Google Scholar 

  • Kálmán L and Maroti P (1994) Stabilization of reduced primary quinone by proton uptake in reaction centers of Rhodobactersphaeroides. Biochemistry 33: 9237–9244

    PubMed  Google Scholar 

  • Kálmán L, LoBrutto R, Allen JP and Williams JC (1999) Modified reaction centres oxidize tyrosine in reactions that mirror Photosystem II. Nature 402: 696–699

    Google Scholar 

  • Kálmán L, LoBrutto R, Allen JP and Williams JC (2003a) Manganese oxidation by modified reaction centers from Rhodobacter sphaeroides. Biochemistry 42: 11016–11022

    PubMed  Google Scholar 

  • Kálmán L, LoBrutto R, Narváez AJ, Williams JC and Allen JP (2003b) Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Biochemistry 42: 13280–13286

    PubMed  Google Scholar 

  • Kálmán L, Thielges MC, Williams JC and Allen JP (2005) Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Biochemistry 44: 13266–13273

    PubMed  Google Scholar 

  • Katilius E, Turanchik T, Lin S, Taguchi AKW and Woodbury NW (1999) B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J Phys Chem B 103: 7386–7389

    CAS  Google Scholar 

  • Katilius E, Babendure JL, Lin S and Woodbury NW (2004) Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side. Photosynth Res 81: 165–180

    CAS  Google Scholar 

  • Katz EY, Shkuropatov AY, Klevanik AV, Adanin VM and Shuvalov VA (1991) Effect of the structure of exogenous quinone on its ability to function as the primary quinone in the reaction centers from Rhodobacter sphaeroides R-26. Biol Memb 8: 468–475

    CAS  Google Scholar 

  • Kee HL, Laible PD, Bautista JA, Hanson DK, Holten D and Kirmaier C (2006) Determination of the rate and yield of B-side quinone reduction in Rhodobacter capsulatus reaction centers. Biochemistry 45: 7314–7322

    PubMed  CAS  Google Scholar 

  • Kennis JTM, Shkuropatov AY, van Stokkum IHM, Gast P, Hoff AJ, Shuvalov VA and Aartsma TJ (1997) Formation of a long-lived P+BA state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature. Biochemistry 36: 16231–16238

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D, Debus RJ, Feher G and Okamura MY (1986) Primary photochemistry of iron-depleted and zinc-reconstituted reaction centers from Rhodopseudomonas sphaeroides. Proc Natl Acad Sci USA 83: 6407–6411

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Holten D, Bylina EJ and Youvan DC (1988) Electron-transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci USA 85: 7562–7566

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Gaul D, DeBey R, Holten D and Schenck CC (1991) Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Science 251: 922–927

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Laible PD, Hanson DK and Holten D (2003) B-side charge separation in bacterial photosynthetic reaction centers: Nanosecond time scale electron transfer from HB - to QB. Biochemistry 42: 2016–2024

    PubMed  CAS  Google Scholar 

  • Kirmaier C, Bautista JA, Laible PD, Hanson DK and Holten D (2005) Probing the contribution of electronic coupling to the directionality of electron transfer in photosynthetic reaction centers. J Phys Chem B 109: 24160–24172

    PubMed  CAS  Google Scholar 

  • Kleinfeld D, Okamura MY and Feher G (1985) Charge recombination kinetics as a probe of protonation of the primary acceptor in photosynthetic reaction centers Biophys J 48: 849–852

    PubMed  CAS  Google Scholar 

  • Knox PP, Churbanova IY, Zakharova NI, Krasil’nikov PM, Lukashev EP, Rubin AB and Shaitan KV (2001) Effects of extraction of the H-subunit from Rhodobacter sphaeroides reaction centers on relaxation processes associated with charge separation. Biochem-Moscow 66: 91–95

    CAS  Google Scholar 

  • Kobayashi M, Takaya A, Kanai N, Ota Y, Saito T, Wang Z-Y and Nozawa T (2004) Reconstitution and replacement of bacteriochlorophyll a molecules in photosynthetic reaction centers. J Biochem 136: 363–369

    PubMed  CAS  Google Scholar 

  • Kok P, Kohler J, Groenen EJJ, Gebhard R, van der Hoef K, Lugtenburg J, Hoff AJ, Farhoosh R and Frank HA (1994) Towards a vibrational analysis of spheroidene — resonance Ramanspectroscopy of C13-labeled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction center. Biochim Biophys Acta 1185: 188–192

    PubMed  CAS  Google Scholar 

  • Kok P, Kohler J, Groenen EJJ, Gebhard R, vander Hoef I, Lugtenburg J, Farhoosh R and Frank HA (1997) Resonance Raman spectroscopy of H2-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre. Spectrochim Acta A-Mol Biomol Spec 53: 381–392

    Google Scholar 

  • Kortluke C, Breese K, Gadon N, Labahn A and Drews G (1997) Structure of the puf operon of the obligately aerobic, bacteriochlorophyll a-containing bacterium Roseobacter denitrificans OCh 114 and its expression in a Rhodobacter capsulatus puf puc deletion mutant. J Bact 179: 5247–5258

    PubMed  CAS  Google Scholar 

  • Kuglstatter A, Miksovska J, Sebban P and Fritzsch G. (2000) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides reconstituted with anthraquinone as primary quinone QA. FEBS Letts 472: 114–116

    CAS  Google Scholar 

  • Kuglstatter A, Ermler U, Michel H, Baciou L and Fritzsch G. (2001) X-ray structure analysis of photosynthetic reaction center variants from Rhodobacter sphaeroides: Structural changes induced by point mutations at position L209 modulate electron and proton transfer. Biochemistry 40: 4253–4260

    PubMed  CAS  Google Scholar 

  • Labahn A, Bruce JM, Okamura MY and Feher G (1995) Direct charge recombination from D+QAQb - to DQAQb in bacterial reaction centers from Rhodobacter sphaeroides containing low potential quinone in the QA site. Chem Phys 197: 355–366

    CAS  Google Scholar 

  • Laible PD, Kirmaier C, Holten D, Tiede DM, Schiffer M and Hanson DK (1998) Formation of P+QA - via B-branch electron transfer in mutant reaction centers. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, pp 849–852. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Laible PD, Kirmaier C, Udawatte CSM, Hofman SJ, Holten D and Hanson DK (2003) Quinone reduction via secondary Bbranch electron transfer in mutant bacterial reaction centers. Biochemistry 42: 1718–1730

    PubMed  CAS  Google Scholar 

  • Lancaster CRD and Michel H (1997) The coupling of lightinduced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, Qb. Structure 5: 1339–1359

    PubMed  CAS  Google Scholar 

  • Laporte L, Kirmaier C, Schenck CC and Holten D (1995) Free-energy dependence of the rate of electron-transfer to the primary quinone in beta-type reaction centers. Chem Phys 197: 225–237

    CAS  Google Scholar 

  • Lersch W and Michel-Beyerle ME (1987) Implications of spin dynamics for the charge recombination in iron-depleted and quinone-substituted reaction centers from Rhodobacter sphaeroides R-26. Biochim Biophys Acta 891: 265–274

    CAS  Google Scholar 

  • Li JL, Gilroy D, Tiede DM and Gunner MR (1998) Kinetic phases in the electron transfer from P+QA -Qb to P+QAQb - and the associated processes in Rhodobacter sphaeroides R-26 reaction centers. Biochemistry 37: 2818–2829

    PubMed  CAS  Google Scholar 

  • Li J, Coleman WJ, Youvan DC and Gunner MR (2000a) Characterization of a symmetrized mutant RC with 42 residues from the QA site replacing residues in the Qb site. Photosynth Res 64: 41–52

    PubMed  Google Scholar 

  • Li JL, Takahashi E and Gunner MR (2000b) -ΔG°ab, and pH dependence of the electron transfer from P+QA -Qb to P+QAQb - in Rhodobacter sphaeroides reaction centers. Biochemistry 39: 7445–7454

    PubMed  CAS  Google Scholar 

  • Lin S, **ao WZ, Eastman JE, Taguchi AKW and Woodbury NW (1996) Low-temperature femtosecond-resolution transient absorption spectroscopy of large-scale symmetry mutants of bacterial reaction centers. Biochemistry 35: 3187–3196

    PubMed  CAS  Google Scholar 

  • Lin S, Katilius E, Ilagan RP, Gibson GN, Frank HA and Woodbury NW (2006) Mechanism of carotenoid singlet excited state energy transfer in modified bacterial reaction centers. J Phys Chem B 110: 15556–15563

    PubMed  CAS  Google Scholar 

  • Liu BL and Hoff AJ(1990) QA-depletion and reconstitution of a reaction center preparation from the photosynthetic bacterium Rhodopseudomonas viridis. FEBS Letts 269: 354–357

    CAS  Google Scholar 

  • Liu BL, van Kan PJM and Hoff AJ (1991a) Influence of the H-subunit and Fe2+ on electron-transport from I to QA in Fe2+-free and or H-free reaction centers from Rhodobacter sphaeroides R-26. FEBS Letts 289: 23–28

    CAS  Google Scholar 

  • Liu BL, Yang LH and Hoff AJ (1991b) On the depletion and reconstitution of both QA and metal in reaction centers of the photosynthetic bacterium Rb sphaeroides R-26. Photosynth Res 28: 51–58

    CAS  Google Scholar 

  • Lubitz W and Feher G (1999) The primary and secondary accepters in bacterial photosynthesis III. Characterization of the quinone radicals QA •- and Qb •- by EPR and ENDOR. Appl Mag Res 17: 1–48

    CAS  Google Scholar 

  • Lubitz W, Lendzian F and Bittl R (2002) Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res 35: 313–320

    PubMed  CAS  Google Scholar 

  • Madeo J and Gunner MR (2005) Modeling binding kinetics at the QA site in bacterial reaction centers. Biochemistry 44: 10994–11004

    PubMed  CAS  Google Scholar 

  • Maki H, Matsuura K, Shimada K and Nagashima KVP (2003) Chimeric photosynthetic reaction center complex of purple bacteria composed of the core subunits of Rubrivivax gelatlnosus and the cytochrome subunit of Blastochloris viridis. J Biol Chem 278: 3921–3928

    PubMed  CAS  Google Scholar 

  • Mallardi A, Giustini M and Palazzo G (1998) Binding of ubiquinone to photosynthetic reaction centers. 2. Determination of enthalpy and entropy changes for the binding to the QA site in reverse micelles. J Phys Chem B 102: 9168–9173

    CAS  Google Scholar 

  • Masuda S, Tsukatani Y, Kimura Y, Nagashima KVP, Shimada K and Matsuura K (2002) Mutational analyses of the photosynthetic reaction center-bound triheme cytochrome subunit and cytochrome c 2 in the purple bacterium Rhodovulum sulfidophllum. Biochemistry 41: 11211–11217

    PubMed  CAS  Google Scholar 

  • Matsuura K, Fukushima A, Shimada K and Satoh T (1988) Direct and indirect electron transfer from cytochromes c and c 2 to the photosynthetic reaction center in pigment-protein complexes isolated from Rhodocyclus gelatinosus. FEBS Lett 237: 21–25

    CAS  Google Scholar 

  • Mattioli TA, Williams JC, Allen JP and Robert B (1994) Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: Identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry 33: 1636–1643

    PubMed  CAS  Google Scholar 

  • Mattioli TA, Lin X, Allen JP and Williams JC (1995) Correlation between multiple hydrogen-bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34: 6142–6152

    PubMed  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Ridge JP, Cogdell RJ, Isaacs NW and Jones MR (2000) Ubiquinone binding, ubiquinone exclusion, and detailed cofactor conformation in a mutant bacterial reaction center. Biochemistry 39: 15032–15043.

    PubMed  CAS  Google Scholar 

  • McPherson PH, Nagarajan V, Parson WW, Okamura MY and Feher G (1990) pH-dependence of the free-energy gap between DQA and D+QA - determined from delayed fluorescence in reaction centers from Rhodobacter sphaeroides R-26. Biochim Biophys Acta 1019: 91–94

    CAS  Google Scholar 

  • Meyer M and Scheer H (1995) Reaction centers of Rhodobacter sphaeroides R26 containing C-3 acetyl and vinyl (bacterio)pheophytins at sites HA,B. Photosynth Res 44: 55–65

    CAS  Google Scholar 

  • Miksovska J, Kálmán L, Schiffer M, Maroti P, Sebban P and Hanson DK (1997) In bacterial reaction centers rapid delivery of the second proton to QB can be achieved in the absence of L212Glu. Biochemistry 36: 12216–12226

    PubMed  CAS  Google Scholar 

  • Möbius K (2000) Primary processes in photosynthesis: What do we learn from high-field EPR spectroscopy? Chem Soc Rev 29: 129–139

    Google Scholar 

  • Moore L and Boxer SG (1998) Inter-chromophore interactions in pigment-modified and dimer-less bacterial photosynthetic reaction centers. Photosynth Res 55: 173–180

    CAS  Google Scholar 

  • Moore LJ, Zhou HL and Boxer SG (1999) Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: Absorption and stark spectroscopy. Biochemistry 38: 11949–11960

    PubMed  CAS  Google Scholar 

  • Morris AL, Snyder SW, Zhang YN, Tang J, Thurnauer MC, Dutton PL, Robertson DE and Gunner MR (1995) Electron-spin polarization model applied to sequential electron-transfer in iron-containing photosynthetic bacterial reaction centers with different quinones as QA. J Phys Chem 99: 3854–3866

    CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS and Dutton PL (1992) Nature of biological electron transfer. Nature 355: 796–802

    PubMed  CAS  Google Scholar 

  • Nabedryk E, Breton J, Williams JC, Allen JP, Kuhn M and Lubitz W (1998) FTIR characterization of the primary electron donor in double mutants combining the heterodimer HL(M202) with the LH(L131), HF(L168), FH(M197), or LH(M160) mutations. Spectrochim Acta A-Mol Biomol Spec 54: 1219–1230

    Google Scholar 

  • Nabedryk E, Schulz C, Muh F, Lubitz W and Breton J (2000) Heterodimeric versus homodimeric structure of the primary electron donor in Rhodobacter sphaeroides reaction centers genetically modified at position M202. Photochem Photobiol 71: 582–588

    PubMed  CAS  Google Scholar 

  • Nagashima KVP, Shimada K and Matsuura K (1996) Shortcut of the photosynthetic electron transfer in a mutant lacking the reaction center-bound cytochrome subunit by gene disruption in a purple bacterium, Rubrivivax gelatinosus. FEBS Letts 385: 209–213

    CAS  Google Scholar 

  • Narváez AJ, LoBrutto R, Allen JP and Williams JC (2004) Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Biochemistry 43: 14379–14384

    PubMed  Google Scholar 

  • Okamura MY, Isaacson RA and Feher G. (1975) Primary acceptor in bacterial photosynthesis — obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides. Proc Natl Acad Sci USA 72: 3491–3495

    PubMed  CAS  Google Scholar 

  • Okamura MY, Paddock ML, Graige MS and Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta: Bioenerg 1458: 148–163

    CAS  Google Scholar 

  • Paddock ML, Feher G and Okamura MY (1995) Pathway of proton transfer in bacterial reaction centers: Further investigations on the role of Ser-L223 studied by site-directed mutagenesis. Biochemistry 34: 15742–15750

    PubMed  CAS  Google Scholar 

  • Paddock ML, Axelrod HL, Abresch EC, Yeh AP, Rees DC, Feher G and Okamura MY (1999a) Crystal structure of a photosynthetic revertantfrom Rb. sphaeroides: Mechanism of action of a long distant suppressor mutation. Biophys J 76: A141–A141

    Google Scholar 

  • Paddock ML, Graige MS, Feher G and Okamura MY (1999b) Identification of the proton pathway in bacterial reaction centers: Inhibition of proton transfer by binding of Zn2+ and Cd2+. Proc Natl Acad Sci USA 96: 6183–6188

    PubMed  CAS  Google Scholar 

  • Paddock ML, Chang C, Xu Q, Abresch EC, Axelrod HL, Feher G and Okamura MY (2005) Quinone (QB) reduction by B-branch electron transfer in mutant bacterial reaction centers from Rhodobacter sphaeroides: Quantum efficiency and X-ray structure. Biochemistry 44: 6920–6928

    PubMed  CAS  Google Scholar 

  • Parson WW (1991) Reaction centers. In: Scheer H (ed) Chlorophylls, pp 1153–1180. CRC Press, Boca Raton

    Google Scholar 

  • Parson WW (1996) Photosynthetic bacterial reaction centers. In: Bendall DS (ed) Protein Electron Transfer, pp 125–160. BIOS Scientific Publishers, Oxford

    Google Scholar 

  • Poluektov OG, Utschig LM, Tang J, Dubinski AA, Schlesselman S, Thurnauer MC (2001) High-frequency EPR approach to the electron spin-polarization effects observed in the photosynthetic reaction centers. Appl Mag Res 21: 311–323

    CAS  Google Scholar 

  • Poluektov OG, Utschig LM, Dubinskij AA and Thurnauer MC (2005) Electron-transfer pathways and protein response to charge separation in photosynthetic reaction centers: timeresolved high-field ENDOR of the spin-correlated radical pair P865+QA -. J Am Chem Soc 127: 4049–4059

    PubMed  CAS  Google Scholar 

  • Potter JA, Fyfe PK, Frolov D, Wakeham MC, van Grondelle R, Robert B and Jones MR (2005) Strong effects of an individual water molecule on the rate of primary charge separation in the Rhodobacter sphaeroides reaction centre. J Biol Chem 280: 27155–27164

    PubMed  CAS  Google Scholar 

  • Qian P, Addlesee HA, Ruban AV, Wang PY, Bullough PA and Hunter CN (2003) A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments. J Biol Chem 278: 23678–23685

    PubMed  CAS  Google Scholar 

  • Reed W and Clayton RK (1968) Isolation of a reaction center fraction from Rhodopseudomonas spheroides. Biochem Biophys Res Commun 30: 471–475

    PubMed  CAS  Google Scholar 

  • Ridge JP (1998) The role of the protein during energy transduction in the bacterial reaction centre. PhD Thesis, University of Sheffield

    Google Scholar 

  • Ridge JP, van Brederode ME, Goodwin MG, van Grondelle R and Jones MR (1999) Mutations that modify or exclude binding of the QA ubiquinone and carotenoid in the reaction center from Rhodobacter sphaeroides. Photosynth Res 59: 9–26

    CAS  Google Scholar 

  • Robles SJ, Breton J and Youvan DC (1990) Partial symmetrization of the photosynthetic reaction center. Science 248: 1402–1405

    PubMed  CAS  Google Scholar 

  • Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H and Frank HA (2004) Protein regulation of carotenoid binding: Gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure 12: 765–773

    PubMed  CAS  Google Scholar 

  • Scheer H and Hartwich G (1995) Bacterial reaction centers with modified tetrapyrrole chromophores. In: Blankenship RE, Madigan MT and Bauer C (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 649–663, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Scheer H and Struck A (1993) Bacterial reaction centers with modified tetrapyrrole chromophores. In: Deisenhofer J and Norris JR (eds) The Photosynthetic Reaction Center, Vol. 1, pp 157–192. Academic Press, San Diego

    Google Scholar 

  • Schelvis JPM, Liu BL, Aartsma TJ and Hoff AJ (1992) The electron-transfer rate from BphA - to QA in reaction centers of Rhodobacter-sphaeroides R-26 -influence of the H-subunit, the QA and Fe2+ cofactors, and the isoprene tail of QA. Biochim Biophys Acta 1102: 229–236

    CAS  Google Scholar 

  • Schmid R and Labahn A (2000) Temperature and free energy dependence of the direct charge recombination rate from the secondary quinone in bacterial reaction centers from Rhodobacter sphaeroides. J Phys Chem B 104: 2928–2936

    CAS  Google Scholar 

  • Schmidt S, Arlt T, Harem P, Huber H, Nagele T, Wachtveitl J, Meyer M, Scheer H and Zinth W (1994) Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers. Chem Phys Letts 223: 116–120

    CAS  Google Scholar 

  • Schnegg A, Fuhs M, Rohrer M, Lubitz W, Prisner TF and Möbius K (2002) Molecular dynamics of QA -• and Qb -• in photosynthetic bacterial reaction centers studied by pulsed high-field EPR at 95 GHz. J Phys Chem B 106: 9454–9462

    CAS  Google Scholar 

  • Sebban P (1988) Activation-energy of the rate-constant of P+QA - absorption decay in reaction centers from Rhodobactersphaeroides reconstituted with different anthraquinones. FEBS Letts 233: 331–334

    CAS  Google Scholar 

  • Sebban P and Lindqvist L (1987) Kinetic-study of PF and CarT states in the LM subunit purified from the wild-type Rhodobacter sphaeroides reaction centers. Photosynth Res 13: 57–67

    CAS  Google Scholar 

  • Sebban P, Maroti P, Schiffer M and Hanson DK (1995) Electrostatic dominoes — long-distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus. Biochemistry 34: 8390–8397

    PubMed  CAS  Google Scholar 

  • Shkuropatov AY and Shuvalov VA (1993) Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26). FEBS Letts 322: 168–172

    CAS  Google Scholar 

  • Shkuropatov AY, Neerken S, Permentier HP, de Wijn R, Schmidt KA, Shuvalov VA, Aartsma TSJ, Gast P and Hoff AJ (2003) The effect of exchange of bacteriopheophytin a with plant pheophytin a on charge separation in Y(M210)W mutant reaction centers of Rhodobacter sphaeroides at low temperature. Biochim Biophys Acta-Bioenerg 1557: 1–12

    CAS  Google Scholar 

  • Spiedel D, Jones MR and Robert B (2002) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: Effects of amino acid polarity and position. FEBS Letts 527: 171–175

    CAS  Google Scholar 

  • Sporlein S, Zinth W, Meyer M, Scheer H and Wachtveitl J (2000) Primary electron transfer in modified bacterial reaction centers: Optimization of the first events in photosynthesis. Chem Phys Letts 322: 454–464

    CAS  Google Scholar 

  • Stehlik D and Möbius K (1997) New EPR methods for investigating photoprocesses with paramagnetic intermediates. Ann Rev Phys Chem 48: 745–784

    CAS  Google Scholar 

  • Stilz HU, Finkele U, Holzapfel W, Lauterwasser C, Zinth W and Oesterhelt D (1994) Influence of M-subunitThr222 and Trp252 on quinone binding and electron-transfer in Rhodobacter sphaeroides reaction centers. Eur J Biochem 223: 233–242

    PubMed  CAS  Google Scholar 

  • Stocker JW, Taguchi AKW, Murchison HA, Woodbury NW and Boxer SG (1992) Spectroscopic and redox properties of Sym1 and (M)F195H — Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron-donor. Biochemistry 31: 10356–10362

    PubMed  CAS  Google Scholar 

  • Storch KF, Cmiel E, Schafer W and Scheer H (1996) Stereoselectivity of pigment exchange with 132-hydroxylated tetrapyrroles in reaction centers of Rhodobacter sphaeroides R26. Eur J Biochem 238: 280–286

    PubMed  CAS  Google Scholar 

  • Stowell MHB, McPhillips TM, Rees DC, Soltis SM, Abresch E and Feher G (1997) Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 276: 812–816

    PubMed  CAS  Google Scholar 

  • Taguchi AKW, Stocker JW, Alden RG, Causgrove TP, Peloquin JM, Boxer SG and Woodbury NW (1992) Biochemical characterization and electron transfer reactions of Sym1, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor. Biochemistry 31: 10345–10355

    PubMed  CAS  Google Scholar 

  • Taguchi AKW, Stocker JW, Boxer SG and Woodbury NW (1993) Photosynthetic reaction center mutagenesis via chimeric rescue of a non-functional Rhodobacter capsulatus puf operon with sequences from Rhodobacter sphaeroides. Photosynth Res 36: 43–58

    CAS  Google Scholar 

  • Taguchi AKW, Eastman JE, Gallo DM, Sheagley E, **ao WZ and Woodbury, NW (1996) Asymmetry requirements in the photosynthetic reaction center of Rhodobacter capsulatus. Biochemistry 35: 3175–3186

    PubMed  CAS  Google Scholar 

  • Takahashi E and Wraight CA (2006) Small weak acids reactivate proton transfer in reaction centers from Rhodobacter sphaeroides mutated at Asp(L210) and Asp(M17). J Biol Chem 281: 4413–4422

    PubMed  CAS  Google Scholar 

  • Tandori J, Baciou L, Alexov E, Maroti P, Schiffer M, Hanson DK and Sebban P (2001) Revealing the involvement of extended hydrogen bond networks in the cooperative function between distant sites in bacterial reaction centers. J Biol Chem 276: 45513–45515

    PubMed  CAS  Google Scholar 

  • Tang J, Utschig LM, Poluektov O and Thurnauer MC (1999) Transient W-band EPR study of sequential electron transfer in photosynthetic bacterial reaction centers. J Phys Chem B 103: 5145–5150

    CAS  Google Scholar 

  • Tehrani A and Beatty JT (2004) Effects of precise deletions in Rhodobacter sphaeroides reaction center genes on steady-state levels of reaction center proteins: A revised model for reaction center assembly. Photosynth Res 79: 101–108

    PubMed  CAS  Google Scholar 

  • Tehrani A, Prince RC and Beatty JT (2003) Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 42: 8919–8928

    PubMed  CAS  Google Scholar 

  • Thielges M, Uyeda G, Cámara-Artigas A, Kálmán L, Williams JC and Allen JP (2005) Design of a redox-linked active metal site: Manganese bound to bacterial reaction centers at a site resembling that of Photosystem II. Biochemistry 44: 7389–7394

    PubMed  CAS  Google Scholar 

  • Turzo K, Laczko G, Filus Z and Maroti P (2000) Quinonedependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys J 79: 14–25

    PubMed  CAS  Google Scholar 

  • Utschig LM and Thurnauer MC (2004) Metal ion modulated electron transfer in photosynthetic proteins. Acc Chem Res 37: 439–447

    PubMed  CAS  Google Scholar 

  • Utschig LM, Greenfield SR, Tang J, Laible PD and Thurnauer MC (1997) Influence of iron-removal procedures on sequential electron transfer in photosynthetic bacterial reaction centers studied by transient EPR spectroscopy. Biochemistry 36: 8548–8558

    PubMed  CAS  Google Scholar 

  • Utschig LM, Ohigashi Y, Thurnauer MC and Tiede DM (1998) A new metal-binding site in photosynthetic bacterial reaction centers that modulates QA to QB electron transfer. Biochemistry 37: 8278–8281

    PubMed  CAS  Google Scholar 

  • Utschig LM, Poluektov O, Tiede DM and Thurnauer MC (2000) EPR investigation of Cu2+-substitutedphotosynthetic bacterial reaction centers: Evidence for histidine ligation at the surface metal site. Biochemistry 39: 2961–2969

    PubMed  CAS  Google Scholar 

  • Utschig LM, Poluektov O, Schlesselman SL, Thurnauer MC and Tiede DM (2001) Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis. Biochemistry 40: 6132–6141

    PubMed  CAS  Google Scholar 

  • Utschig LM, Thurnauer MC, Tiede DM and Poluektov OG (2005) Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: Characterization of QB-states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Biochemistry 44: 14131–14142

    PubMed  CAS  Google Scholar 

  • van Brederode ME and Jones MR (2000) Reaction centres of purple bacteria. In: Scrutton NS and Holzenburg A (eds) Enzyme-Catalysed Electron and Radical Transfer, pp 621–676. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • van Brederode ME, van Stokkum IHM, Katilius E, van Mourik F, Jones MR and van Grondelle R (1999) Primary charge separation routes in the BChl:BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry 38: 7545–7555

    PubMed  Google Scholar 

  • van den Brink JS, Hulsebosch RJ, Gast P, Hore PJ and Hoff AJ (1994a) QA binding in reaction centers of the photosynthetic purple bacterium Rhodobacter sphaeroides R26 investigated with electron spin polarization spectroscopy. Biochemistry 33: 13668–13677

    PubMed  Google Scholar 

  • van den Brink JS, Spoyalov AP, Gast P, van Liemt WBS, Raap J, Lugtenburg J and Hoff AJ (1994b) Asymmetric binding of the primary acceptor quinone in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides R26, probed with Q-band (35 GHz) EPR spectroscopy. FEBS Letts 353: 273–276.

    Google Scholar 

  • van Liemt WBS, Boender GJ, Gast P, Hoff AJ, Lugtenburg J and de Groot HJM (1995) C13 magic-angle-spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific C13-labeled ubiquinone-10. Biochemistry 34: 10229–10236

    PubMed  Google Scholar 

  • Vos MH, Lambry JC, Robles SJ, Youvan DC, Breton J and Martin JL (1991) Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorptionspectroscopy. Proc Natl Acad Sci USA 88: 8885–8889

    PubMed  CAS  Google Scholar 

  • Vos MH, Rappaport F, Lambry JC, Breton J and Martin JL (1993) Visualization of coherent nuclear motion in a membrane-protein by femtosecond spectroscopy. Nature 363: 320–325

    CAS  Google Scholar 

  • Wachtveitl J, Farchaus JW, Das R, Lutz M, Robert B and Mattioli TA (1993) Structure, spectroscopic and redox properties of Rhodobacter sphaeroides reaction centers bearing point mutations near the primary electron donor. Biochemistry 32: 12875–12886

    PubMed  CAS  Google Scholar 

  • Wakeham MC and Jones MR (2005) Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem SocTrans 33: 851–857

    CAS  Google Scholar 

  • Wakeham MC, Goodwin MG, McKibbin C and Jones MR (2003) Photo-accumulation of the P+QB - radical pair state in purple bacterial reaction centres that lack the QA ubiquinone. FEBS Letts 540: 234–240

    CAS  Google Scholar 

  • Wakeham MC, Breton J, Nabedryk E and Jones MR (2004) Formation of a semiquinone at the QB site by A-branch or B-branch electron transfer in the reaction centre from Rhodobacter sphaeroides. Biochemistry 43: 4755–4763

    PubMed  CAS  Google Scholar 

  • Warncke K and Dutton PL (1993a) Influence of QA site redox cofactor structure on equilibrium binding, in situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein. Biochemistry 32: 4769–4779

    PubMed  CAS  Google Scholar 

  • Warncke K and Dutton PL (1993b) Experimental resolution of the free-energies of aqueous solvation contributions to ligand protein-binding — quinone-QA site interactions in the photosynthetic reaction center protein. Proc Natl Acad Sci USA 90: 2920–2924

    PubMed  CAS  Google Scholar 

  • Warncke K, Gunner MR, Braun BS, Gu LQ, Yu CA, Bruce JM and Dutton PL (1994) Influence of hydrocarbon tail structure on quinone binding and electron-transfer performance at the QA and QB sites of the photosynthetic reaction-center protein. Biochemistry 33: 7830–7841

    PubMed  CAS  Google Scholar 

  • Watson AJ (2005) Stability andinteractions of the purple bacterial reaction centre. PhD Thesis, University of Bristol

    Google Scholar 

  • Watson AJ, Fyfe PK, Frolov D, Wakeham MC, Nabedryk E, van Grondelle R, Breton J and Jones MR (2005) Replacement or exclusion of the B-branch bacteriopheophytin in the purple bacterial reaction centre: the HB cofactor is not required for assembly or core function of the Rhodobacter sphaeroides complex. Biochim Biophys Acta: Bioenerg 1710: 34–46

    CAS  Google Scholar 

  • Wikipedia, The Free Encyclopedia. http://en.wikipedia.org (July 27, 2006)

  • Wong DK-H, Collins WJ, Harmer A, Lilburn TG and Beatty JT (1996) Directed mutagenesis of the Rhodobacter capsulatus puhA gene and orf 214: Pleiotropic effects on photosynthetic reaction center and light-harvesting 1 complexes. J Bact 178: 2334–2342

    PubMed  CAS  Google Scholar 

  • Woodbury NW and Allen JP (1995) The pathway, kinetics and thermodynamics of electron transfer in wild-type and mutant bacterial reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 527–557. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Woodbury NW, Parson WW, Gunner MR, Prince RC and Dutton PL (1986) Radical-pair energetics and decay mechanisms in reaction centers containing anthraquinones, naphthoquinones or benzoquinones in place of ubiquinone. Biochim Biophys Acta 851: 6–22

    PubMed  CAS  Google Scholar 

  • Wraight CA (2004) Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Frontiers in Biosciences 9: 309–337

    CAS  Google Scholar 

  • Xu Q and Gunner MR (2000) Temperature dependence of the free energy, enthalpy, and entropy of P+QA - charge recombination in Rhodobacter sphaeroides R-26 reaction centers. J Phys Chem B 104: 8035–8043

    CAS  Google Scholar 

  • Yakovlev AG, Jones MR, Potter JA, Fyfe PK, Vasilieva LG, Shkuropatov AYa and Shuvalov VA (2005) Primary charge separation between P* and BA: Electron-transfer pathways in native and mutant GM203L bacterial reaction centers. Chem Phys 319: 297–307

    CAS  Google Scholar 

  • Yanagi K, Shimizu M, Hashimoto H, Gardiner AT, Roszak AW and Cogdell RJ (2005) Local electrostatic field induced by the carotenoid bound to the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides. J Phys Chem B 109: 992–998

    PubMed  CAS  Google Scholar 

  • Yeates TO, Komiya H, Chirino A, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rhodobactersphaeroides R-26 and 2.4.1-protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc Natl Acad Sci USA 85: 7993–7997

    PubMed  CAS  Google Scholar 

  • Youvan DC, Ismail S and Bylina EJ (1985) Chromosomal deletion and plasmid complementation of the photosynthetic reaction center and light-harvesting genes from Rhodopseudomonas capsulata. Gene 38: 19–30

    PubMed  CAS  Google Scholar 

  • Zech SG, Bittl R, Gardiner AT and Lubitz W (1997) Transient and pulsed EPR spectroscopy on the radical pair state P865 +•QA -• to study light-induced changes in bacterial reaction centers. App Mag Res 13: 517–529

    CAS  Google Scholar 

  • Zilsel J, Lilburn TG and Beatty JT (1989) Formation of functional inter-species hybrid photosynthetic complexes in Rhodobacter capsulatus. FEBS Letts 253: 247–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Jones, M.R. (2009). Structural Plasticity of Reaction Centers from Purple Bacteria. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_16

Download citation

Publish with us

Policies and ethics

Navigation