The Cytochrome bc 1 and Related bc Complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex

  • Chapter
The Purple Phototrophic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 28))

Summary

The cytochrome (Cyt) bc 1 and related complexes play a central role in purple bacterial photosynthesis, transferring electrons between electron carriers reduced and oxidized by the photochemical reaction centers, oxidizing quinol (QH2) and reducing Cyt c while translocating protons via some variation of the Q-cycle mechanism. In this chapter, we discuss recent advances in the biochemical, biophysical and evolutionary understanding of these complexes. The mechanistic core of these complexes, conserved over billions of years, contains the Cyt b protein (with its two associated b-type hemes) and the Rieske iron-sulfur center. Together, this central core performs the central (and well-conserved) reaction of the Q-cycle, that is the ‘bifurcated’ oxidation of QH2 at the quinol oxidation (Qo) site, with two electrons sent to different acceptors, one to the Rieske iron-sulfur center and the other to the Cyt b chain. The subsequent reactions of the Q-cycle, involving the reduction of secondary carriers (a high potential Cyt c in the case of purple bacteria) and quinone at the quinone reduction (Qi) site are less well conserved both in terms of structure and mechanism. We thus use the term Rieske/Cytochrome b (RB) complexes for these enzymes. Key issues surrounding the mechanisms of the RB complexes are discussed, including a series of currently debated models for the avoidance of deleterious side reactions within the Qo site, the mechanism of stabilization of semiquinone intermediates within the Qi site, and the role of the pivoting iron-sulfur protein subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

[2Fe-2S]:

the ‘Rieske’ iron-sulfur center of the iron sulfur protein

AA:

antimycin A

C:

high potential electron carriers that accept electrons from the [2Fe-2S] center

CW-EPR:

continuous wave-electron paramagnetic resonance

Cyt:

cytochrome

Em :

redox midpoint potential

EPR:

electron paramagnetic resonance

HQNO:

2-n-heptyl-4-hydroxyquinoline-N-oxide

ISP:

iron-sulfur protein subunit

k SOP :

the rate constant for reduction of O2 by SQ

KSQ :

the equilibrium constant for oxidation of QH2 to SQ

LUCA:

last universal common ancestor

MOA-stilbene:

E-β-methoxyacrylate-stilbene

pmf :

proton motive force

Q:

quinone

QB :

the quinone reductase site of type II reaction centers

QH2 :

quinol or hydroquinone

Qi :

quinone reductase site of the RB complexes

Qo :

quinol oxidase site of the RB complexes

RB:

Rieske/Cytochrome b

SC:

secondary electron carriers

SQ:

semiquinone (the term ‘SQ’is used to indicate both the anion (Q·) and neutral (Q·H) forms)

UQ:

ubiquinone

UQH2 :

ubiquinol

vSOP :

velocity of Superoxide production

References

  • Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM and Giudici-Orticoni MT (2003) The structure of Acidithiobacillus ferrooxidans c 4-cytochrome: A model for complex-induced electron transfer tuning. Structure 11: 547–555

    PubMed  CAS  Google Scholar 

  • Afanas’ev I (2004) Interplay between Superoxide and nitric oxide in aging and diseases. Biogerontology 5: 267–270

    PubMed  CAS  Google Scholar 

  • Afanas’ev IB (1989) Superoxide ion: Chemistry and Biological Implications. CRC Press, Boca Raton

    Google Scholar 

  • Alric J, Pierre Y, Picot D, Lavergne J and Rappaport F (2005) Spectral and redox characterization of the heme ci of the cytochrome b 6 f complex. Proc Natl Acad Sci USA 102: 15860–15865

    PubMed  CAS  Google Scholar 

  • Avise JC (1986) Mitochondrial DNA and the evolutionary genetics of higher animals. Philos Trans R Soc London B312: 325–342

    Google Scholar 

  • Baymann F, Giusti F, Picot D and Nitschke W (2007) The ci/bH moiety in the b 6 f complex studied by EPR: A pair of strongly interacting hemes. Proc Natl Acad Sci USA 104: 519–524

    PubMed  CAS  Google Scholar 

  • Baymann F, Lebrun E and Nitschke W (2004) Mitochondrial cytochrome c 1 is a collapsed di-heme cytochrome. Proc Natl Acad Sci USA 101: 17737–17740

    PubMed  CAS  Google Scholar 

  • Berden JA and Slater EC (1972) The allosteric binding of antimycin to cytochrome b in the mitochondrial membrane. Biochim Biophys Acta 256: 199–215

    PubMed  CAS  Google Scholar 

  • Berry EA and Huang LS (2003) Observations concerning the quinol oxidation site of the cytochrome bc 1 complex. FEBS Lett 555: 13–20

    PubMed  CAS  Google Scholar 

  • Berry EA, Zhang Z, Huang LS and Kim SH (1999) Structures of quinone-binding sites in bc complexes: Functional implications. Biochem Soc Trans 27: 565–572

    PubMed  CAS  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS and Crofts AR (2000) Structure and function of cytochrome bc complexes. Annu Rev Biochem 69: 1005–1075

    PubMed  CAS  Google Scholar 

  • Berry EA, Huang LS, Saechao LK, Pon NG, Valkova-Valchanova M and Daldal F (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc 1: Comparison with its mitochondrial and chloroplast counterparts. Photosynth Res. 81: 251–275

    PubMed  CAS  Google Scholar 

  • Brandt U (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc 1 complex by proton-gated charge transfer. FEBS Lett 387: 1–6

    PubMed  CAS  Google Scholar 

  • Brasseur G, Saribas AS and Daldal F (1996) A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc 1 complex. Biochim Biophys Acta 1275: 61–69

    PubMed  Google Scholar 

  • Brasseur G, Bruscella P, Bonnefoy V and Lemesle-Meunier D (2002) The bc 1 complex of the iron-grown acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans functions in the reverse but not in the forward direction. Is there a second bc 1 complex? Biochim Biophys Acta 1555: 37–43

    PubMed  CAS  Google Scholar 

  • Brugna-Guiral M, Tron P, Nitschke W, Stetter KO, Burlat B, Guigliarelli B, Bruschi M and Giudici-Orticoni MT (2003) [NiFe] hydrogenases from the hyperthermophilic bacterium Aquifex aeolicus: Properties, function, and phylogenetics. Extremophiles 7: 145–157

    PubMed  CAS  Google Scholar 

  • Brugna M, Albouy D and Nitschke W (1998) Diversity of cytochrome bc complexes: Example of the Rieske protein in green sulfur bacteria. J Bacteriol 180: 3719–3723

    PubMed  CAS  Google Scholar 

  • Brugna M, Nitschke W, Asso M, Guigliarelli B, Lemesle-Meunier D and Schmidt C (1999) Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. II. The Rieske protein of phylogenetically distant acidophilic organisms. J Biol Chem 274: 16766–16772

    PubMed  CAS  Google Scholar 

  • Brugna M, Rogers S, Schricker A, Montoya G, Kazmeier M, Nitschke W and Sinning I (2000) A spectroscopic method for observing the domain movement of the Rieske iron-sulfur protein. Proc Natl Acad Sci USA 97: 2069–2074

    PubMed  CAS  Google Scholar 

  • Cape JL, Strahan JR, Lenaeus MJ, Yuknis BA, Le TT, Shepherd JN, Bowman MK and Kramer DM (2005) The respiratory substrate rhodoquinol induces Q-cycle bypass reactions in the yeast cytochrome bc 1 complex. J Biol Chem 280: 34654–34660

    PubMed  CAS  Google Scholar 

  • Cape JL, Bowman MK and Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11: 46–55

    PubMed  CAS  Google Scholar 

  • Cape JL, Bowman MK and Kramer DM (2007) A semiquinone intermediate generated at the Qo site of the cytochrome bc 1 complex. Importance for the Q-cycle and Superoxide production. Proc Natl Acad Sci USA 104: 7887–7892

    PubMed  CAS  Google Scholar 

  • Castresana J, Lubben M and Saraste M (1995) New archaebacterial genes coding for redox proteins: Implications for the evolution of aerobic metabolism. J Mol Biol 250: 202–210

    PubMed  CAS  Google Scholar 

  • Cooley JW, Roberts AG, Bowman MK, Kramer DM and Daldal F (2004) The raised midpoint potential of the [2Fe-2S] cluster of cytochrome bc 1 is mediated by both the Qo site occupants and the head domain position of the Fe-S protein subunit. Biochemistry 43: 2217–2227

    PubMed  CAS  Google Scholar 

  • Cooley JW, Ohnishi T and Daldal F (2005) Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc 1 complex. Biochemistry 44: 10520–10532

    PubMed  CAS  Google Scholar 

  • Covian R and Trumpower BL (2005) Rapid electron transfer between monomers when the cytochrome bc 1 complex dimer is reduced through center N J Biol Chem 280: 22732–22740

    CAS  Google Scholar 

  • Covian R, Gutierrez-Cirlos EB and Trumpower BL (2004) Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc 1 complex. J Biol Chem 279: 15040–15049

    PubMed  CAS  Google Scholar 

  • Cramer WA and Crofts AR (1982) Electron and proton transport. In: [editors?] Photosynthesis: Energy Conversion By Plants and Bacteria, Vol I, pp 387–466. Academic Press, New York

    Google Scholar 

  • Cramer WA and Zhang H (2006) Consequences of the structure of the cytochrome b 6 f complex forits charge transferpathways. Biochim Biophys Acta 1757: 339–345

    PubMed  CAS  Google Scholar 

  • Cramer WA, Soriano GM, Zhang H, Ponamarev MV and Smith JL (1997) The cytochrome b 6 f complex. Novel aspects. Physiol Plant 100: 852–862

    CAS  Google Scholar 

  • Crofts AR (2004a) The cytochrome bc 1 complex: Function in the context of structure. Annu Rev Physiol 66: 689–733

    PubMed  CAS  Google Scholar 

  • Crofts AR (2004b) Proton-coupled electron transfer at the Qo-site of the bc 1 complex controls the rate of ubihydroquinone oxidation. Biochim Biophys Acta 1655: 77–92

    PubMed  CAS  Google Scholar 

  • Crofts AR (2005) The bc 1 complex: What is there left to argue about? In: M Wikström M (ed) Biophysical and Structural Aspects of Bioenergetics, pp 123–155. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Crofts AR and Berry EA (1998) Structure and function of the cytochrome bc 1 complex of mitochondria and photosynthetic bacteria. Curr Op Struct Biol 8: 501–509

    CAS  Google Scholar 

  • Crofts AR, Wang Z (1989) How rapid are the internal reactions of the ubiquinol:cytochrome c 2 oxidoreductase? Photosynth. Res. 22: 69–87

    CAS  Google Scholar 

  • Crofts A, Hong S, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M and Berry E (1999) Pathways for proton release during ubihydroquinone oxidation by the bc 1 complex. Proc Natl Acad Sci USA 96: 10021–10026

    PubMed  CAS  Google Scholar 

  • Crofts AR, Guergova-Kuras M, Kuras R, Ugulava N, Li J and Hong S (2000) Proton-coupled electron transfer at the Qo site: What type of mechanism can account for the high activation barrier? Biochim Biophys Acta 1459: 456–466

    PubMed  CAS  Google Scholar 

  • Crofts AR, Shinkarev VP, Rolling DR, Hong S (2003) The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c 1 and bH in the bc 1 complex. J Biol Chem 278: 36191–36201

    PubMed  CAS  Google Scholar 

  • Crofts AR, Lhee S, Crofts SB, Cheng J and Rose S (2006) Proton pum** in the bc 1 complex: A new gating mechanism that prevents short circuits. Biochim Biophys Acta 1757: 1019–103

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M and Daldal F (2000a) Probing the role of the Fe-S subunit hinge region during Qo site catalysis in Rhodobacter capsulatus bc 1 complex. Biochemistry 39: 15475–15483

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M, Moser C, Dutton PL and Daldal F (2000b) Uncovering the [2Fe-2S] domain movement in cytochrome bc 1 and its implications for energy conversion. Proc Natl Acad Sci USA 97: 4567–4572

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Moser CC, Dutton PL and Daldal F (2001) Large scale domain movement in cytochrome bc 1. A new device for electron transfer in proteins. Trends Biochem Sci 26: 445–451

    PubMed  CAS  Google Scholar 

  • Darrouzet E, Valkova-Valchanova M and Daldal F (2002) The [2Fe-2S] cluster E m as an indicator of the iron-sulfur subunit position in the ubihydroquinone oxidase site of the cytochrome bc 1 complex. J Biol Chem 277: 3464–3470

    PubMed  CAS  Google Scholar 

  • De Vries S, Albracht SPJ, Berden JA, Marres CAM and Slater EC (1983) The Effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol: cytochrome c oxidoreductase. Biochim Biophys Acta 723: 91–103

    PubMed  Google Scholar 

  • Dikanov SA, Kolling DR, Endeward B, Samoilova RI, Prisner TF, Nair SK and Crofts AR (2006) Identification of hydrogen bonds to the Rieske cluster through the weakly coupled nitrogens detected by electron spin echo envelope modulation spectroscopy. J Biol Chem 281: 27416–27425

    PubMed  CAS  Google Scholar 

  • Dikanov SA, Samoilova RI, Kolling DRJ, Holland JT and Crofts AR (2004) Hydrogen bonds involved in binding the Qi-site semiquinone in the bc 1 complex, identified through deuterium exchange using pulsed EPR. J Biol Chem 279: 15814–15823

    PubMed  CAS  Google Scholar 

  • Ding HG, Robertson DE, Daldal F and Dutton PL (1992) Cytochrome-bc 1 complex [2Fe-2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site — a double-occupancy Qo site model. Biochemistry 31: 3144–3158

    PubMed  CAS  Google Scholar 

  • Ding H, Moser CC, Robertson DE, Tokito MK, Daldal F and Dutton PL (1995) Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc 1 complex. Biochemistry 34: 15979–15996

    PubMed  CAS  Google Scholar 

  • Forquer I, Cape J, Bowman MK and Kramer DM (2005) Sequential two-electron oxidation of ubiquinol by the cytochrome bc 1 complex. In: A van der Est and D Bruce (eds), Photosynthesis: FundamentalAspects to Global Perspectives, Vol 1, pp 430–432. ACG Publishing, Lawrence

    Google Scholar 

  • Forquer I, Covian R, Bowman MK, Trumpower B and Kramer DM (2006) Similar transition states mediate the Q-cycle and Superoxide production by the cytochrome bc 1 complex. J Biol Chem 281: 38459–38465

    PubMed  CAS  Google Scholar 

  • Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA and **a D (2003) Structural basis for the quinone reduction in the bc 1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc 1 with bound substrate and inhibitors at the Qi site. Biochemistry 42: 9067–9080

    PubMed  CAS  Google Scholar 

  • Gao X, Wen X, Yu C, Esser L, Tsao S, Quinn B, Zhang L, Yu L and **a D (2002) The crystal structure of mitochondrial cytochrome bc 1 in complex with famoxadone: The role of aromatic-aromatic interaction in inhibition. Biochemistry 41: 11692–11702

    PubMed  CAS  Google Scholar 

  • Gennis RB, Barquera B, Hacker B, Van Doren SR, Arnaud S, Crofts AR, Davidson E, Gray KA and Daldal F (1993) The bc 1 complex of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioenerg Biomembr 25: 195–209

    PubMed  CAS  Google Scholar 

  • Gong X, Yu L, **a D and Yu CA (2004) Evidence for electron equilibrium between the two hemes b L in the dimeric cytochrome bc 1 complex. J Biol Chem 280: 9251–9257

    PubMed  Google Scholar 

  • Gong X, Yu L and Yu CA (2006) The role of an extra fragment of cytochrome b (residues 309–326) in the cytochrome bc 1 complex from Rhodobacter sphaeroides. Biochemistry 45: 11122–11129

    PubMed  CAS  Google Scholar 

  • Gray KA and Daldal F (1995) Mutational studies of the cytochrome bc 1 complexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 747–774. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gray KA, Dutton PL and Daldal F (1994) Requirement of histidine-217 for ubiquinone reductase-activity (Qi-Site) in the cytochrome-bc 1 complex. Biochemistry 33: 723–733

    PubMed  CAS  Google Scholar 

  • Guergova-Kuras M, Kuras R, Ugulava N, Hadad I and Crofts AR (2000) Specific mutagenesis of the Rieske iron-sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc 1 complex. Biochemistry 39: 7436–7444

    PubMed  CAS  Google Scholar 

  • Guidot DM, McCord JM, Wright RM and Repine JE (1993) Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of Superoxide generation in vivo. J Biol Chem 268: 26699–26703

    PubMed  CAS  Google Scholar 

  • Gutierrez-Cirlos EB and Trumpower BL (2002) Inhibitory analogs of ubiquinol act anti-cooperatively on the yeast cytochrome bc 1 complex — Evidence for an alternating, half-of-the-sites mechanism of ubiquinol oxidation. J Biol Chem 277: 1195–1202

    PubMed  CAS  Google Scholar 

  • Hettmann T, Schmidt CL, Anemüller S, Zähringer U, Moll H, Petersen A and Schäfer G (1998) Cytochrome b 558/566 from the archaeon Sulfolobus acidocaldarius. A novel highly glycosylated, membrane-bound b-type hemoprotein. J Biol Chem 273: 12032–12040

    PubMed  CAS  Google Scholar 

  • Hiller A, Henninger T, Schäfer G and Schmidt CL (2003) New genes encoding subunits of a cytochrome bc 1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 35: 121–131

    PubMed  CAS  Google Scholar 

  • Huang D, Everly RM, Cheng RH, Heymann JB, Schägger H, Sled V, Ohnishi T, Baker TS and Cramer WA (1994) Characterization of the chloroplast cytochrome b 6 f complex as a structural and functional dimer. Biochemistry 33: 4401–4409

    PubMed  CAS  Google Scholar 

  • Huang LS, Cobessi D, Tung EY and Berry EA (2005) Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc 1 complex: A new crystal structure reveals an altered intramolecular hydrogen-bonding pattern. J Mol Biol 351: 573–597

    PubMed  CAS  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T and Michel H (2000) Structure at 2.3 Å resolution of the cytochrome bc 1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure with Folding and Design 8: 669–684

    PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, Rasmussen B, Link TA, Ramaswamy S and Jap BK (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1, complex. Science 281: 64–71

    PubMed  CAS  Google Scholar 

  • Jenny Jr. FE, Prince RC and Daldal F (1996) The membrane-bound cytochrome c y of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction center of Rhodobacter sphaeroides. Biochim Biophys Acta 1273: 159–164

    Google Scholar 

  • Joliot P and Joliot A (1984) Electron transfer between the two photosystems. II Equilibrium constants. Biochim Biophys Acta 765: 219–226

    CAS  Google Scholar 

  • Kessl JJ, Lange BB, Merbitz-Zahradnik T, Zwicker K, Hill P, Meunier B, Palsdottir H, Hunte C, Meshnick S and Trumpower BL (2003) Molecular basis for atovaquone binding to the cytochrome bc 1 complex. J Biol Chem 278: 31312–31318

    PubMed  CAS  Google Scholar 

  • Klishin SS and Mulkidjanian AY (2005) Electron/proton coupling in the cytochrome bc 1 complex of Rhodobacter capsulatus. Biophys J 88: 326A

    Google Scholar 

  • Kolling DRJ, Samoilova RI, Holland JT, Berry EA, Dikanov SA and Crofts AR (2003) Exploration of ligands to the Qi site semiquinone in the bc 1 complex using high-resolution EPR. J Biol Chem 278: 39747–39754

    PubMed  CAS  Google Scholar 

  • Kramer D and Crofts AR (1992) The concerted reduction of cytochromes b and/of the b/f complex by plastoquinol. EBEC Short Reports 7: 4

    Google Scholar 

  • Kramer DM and Crofts AR (1993) The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol. Biochim Biophys Acta 1183: 72–84

    CAS  Google Scholar 

  • Kramer DM and Crofts AR (1994) Re-examination of the properties and function of the b cytochromes of the thylakoid cytochrome bf complex. Biochim Biophys Acta 1184: 193–201

    CAS  Google Scholar 

  • Kramer DM, Roberts AG, Muller F, Cape J and Bowman MK (2003) Q-cycle bypass reactions at the Qo site of the cytochrome bc 1 (and related) complexes. Methods in Enzymology 382: 21–45

    Google Scholar 

  • Kramer DM, Cape JL, Forquer I and Bowman MK (2005) Kinetic steering of quinol oxidation by ‘proton strip**’ at the cytochrome bc 1 complex Qo site. In: A van der Est and D Bruce (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, Vol 1, pp 424–427. ACG Publishing, Lawrence

    Google Scholar 

  • Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: Tuning the cavity. Science 302: 1009–1014

    PubMed  CAS  Google Scholar 

  • Lange C and Hunte C (2002) Crystal structure of the yeast cytochrome bc 1 complex with its bound substrate cytochrome c. Proc Natl Acad Sci USA 99: 2800–2805

    PubMed  CAS  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J, Dionne L, Lu N, Huang S and Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial super-oxide dismutase-deficient mice. Proc Natl Acad Sci USA 93: 9782–9787.

    PubMed  CAS  Google Scholar 

  • Lebrun E, Brugna M, Baymann F, Muller D, Lievremont D, Lett MC and Nitschke W (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686–693

    PubMed  CAS  Google Scholar 

  • Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F and Nitschke W (2006) The Rieske protein: a case study on the pitfalls of multiple sequence alignments and phylogenetic reconstruction. Mol Biol Evol 23: 1180–1191

    PubMed  CAS  Google Scholar 

  • Link TA (1997) The role of the ‘Rieske’ iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc 1 complex — The ‘proton-gated affinity change’ mechanism. FEBS Lett 412: 257–264

    PubMed  CAS  Google Scholar 

  • Longo VD, Liou LL, Valentine JS and Gralla EB (1999) Mitochondrial Superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys 365: 131–142

    PubMed  CAS  Google Scholar 

  • Malkin R (1981) Interaction of the quinone analogue, DBMIB, with the photosynthetic Rieske iron-sulfur center. Israel J Chem 21: 301–305

    CAS  Google Scholar 

  • Martinez SE, Huang D, Szczepaniak A, Cramer WA and Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2: 95–105

    PubMed  CAS  Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: A general formulation. FEBS Lett 59: 137–139

    PubMed  CAS  Google Scholar 

  • Mooser D, Maneg O, Corvey C, Steiner T, Malatesta F, Karas M, Soulimane T and Ludwig B (2005) A four-subunit cytochrome bc 1 complex complements the respiratory chain of Thermus thermophilus. Biochim Biophys Acta 1708: 262–274

    PubMed  CAS  Google Scholar 

  • Mooser D, Maneg O, MacMillan F, Malatesta F, Soulimane T and Ludwig B (2006) The menaquinol-oxidizing cytochrome bc complex from Thermus thermophilus: Protein domains and subunits. Biochim Biophys Acta 1757: 1084–1095

    PubMed  CAS  Google Scholar 

  • Mulkidjanian AY (2005) Ubiquinol oxidation in the cytochrome bc 1 complex: Reaction mechanism and prevention of short-circuiting. Biochim Biophys Acta 1709: 5–34

    PubMed  CAS  Google Scholar 

  • Muller F (2000) The nature and mechanism of Superoxide production by the electron transport chain: Its relevance to aging. J Amer Aging Assoc 23: 227–256

    CAS  Google Scholar 

  • Muller F, Crofts AR and Kramer DM (2002) Multiple Q-cycle bypass reactions at the Qo-site of the cytochrome bc 1 complex. Biochemistry 41: 7866–7874

    PubMed  CAS  Google Scholar 

  • Muller F, Roberts AG, Bowman MK and Kramer DM (2003) Architecture of the Qo site of the cytochrome bc 1 complex probed by Superoxide production. Biochemistry 42: 6493–6499

    PubMed  CAS  Google Scholar 

  • Naqui A, Chance B and Cadenas E (1986) Reactive oxygen intermediates in biochemistry. Annu Rev Biochem 55: 137–166

    PubMed  CAS  Google Scholar 

  • Nitschke W, Kramer DM, Riedel A and Liebl U (1995) From Naphtho- to benzoquinones — (r)evolutionary reorganisations of electron transfer chains. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 945–950. Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Ohnishi T, Brandt U and von Jagow G (1988) Studies on the effect of stigmatellin derivatives on cytochrome b and the Rieske iron-sulfur cluster of cytochrome c reductase from bovine heart mitochondria. FEBS Lett 176: 385–389

    CAS  Google Scholar 

  • Ohnishi T, Johnson JE, Jr., Yano T, LoBrutto R and Widger WR (2005) Thermodynamic and EPR studies of slowly relaxing ubisemiquinone species in the isolated bovine heart complex I. FEBS Lett 579: 500–506

    PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC, Daldal F and Dutton PL (2004) Reversible redox energy coupling in electron transfer chains. Nature 427: 607–612

    PubMed  CAS  Google Scholar 

  • Osyczka A, Moser CC and Dutton PL (2005) Fixing the Q cycle. Trends Biochem Sci 30: 176–182

    PubMed  CAS  Google Scholar 

  • Osyczka A, Zhang H, Mathe C, Rich PR, Moser CC and Dutton PL (2006) Role of the PEWY glutamate in hydroquinone-quinone oxidation-reduction catalysis in the Qo site of cytochrome bc 1. Biochemistry 45: 10492–10503

    PubMed  CAS  Google Scholar 

  • Palsdottir H, Lojero CG, Trumpower BL and Hunte C (2003) Structure of the yeast cytochrome bc 1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278: 31303–31311

    PubMed  CAS  Google Scholar 

  • Rich P, Heathcote P and Moss DA (1987) Electron and proton transfer in the cytochrome bf complex. In: Biggins J (ed) Progress in Photosynthesis Research, Vol II, pp 453–460. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Rinyu L, Martin EW, Takahashi E, Maroti P and Wraight CA (2004) Modulation of the free energy of the primary quinone acceptor (QA) in reaction centers from Rhodobacter sphaeroides: Contributions from the protein and protein-lipid(cardiolipin) interactions. Biochim Biophys Acta 1655: 93–101

    PubMed  CAS  Google Scholar 

  • Roberts A, Bowman MK and Kramer DM (2001) Certain metal ions are inhibitors of cytochrome b 6 f‘Rieske’ iron-sulfur protein domain movements. Biochemistry 41: 4070–4079

    Google Scholar 

  • Rothery RA, Seime AM, Spiers AM, Maklashina E, Schroder I, Gunsalus RP, Cecchini G and Weiner JH (2005) Defining the Q-site of Escherichia coli fumarate reductase by site-directed mutagenesis, fluorescence quench titrations and EPR spectroscopy. FEBS J 272: 313–326

    PubMed  CAS  Google Scholar 

  • Schütz M, Brugna M, Lebrun E, Baymann F, Huber R, Stetter KO, Hauska G, Toci R, Lemesle-Meunier D, Tron P, Schmidt C and Nitschke W (2000) Early evolution of cytochrome bc complexes. J Mol Biol 300: 663–675

    PubMed  Google Scholar 

  • Shinkarev VP (2006) Ubiquinone (coenzyme Q10) binding sites: low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett 580: 2534–2539

    PubMed  CAS  Google Scholar 

  • Shinkarev VP and Wraight CA (2007) Intermonomer electron transfer in the bc 1 complex dimer is controlled by the energized state and by impaired electron transfer between low and high potential hemes. FEBS Lett 581: 1535–1541

    PubMed  CAS  Google Scholar 

  • Shinkarev VP, Kolling DR, Miller TJ and Crofts AR (2002) Modulation of the midpoint potential of the [2Fe-2S] Rieske iron sulfur center by Qo occupants in the bc 1 complex. Biochemistry 41: 14372–14382

    PubMed  CAS  Google Scholar 

  • Smith JL, Zhang H, Yan J, Kurisu G and Cramer WA (2004) Cytochrome bc complexes: A common core of structure and function surrounded by diversity in the outlying provinces. Curr Opin Struct Biol 14: 432–439

    PubMed  CAS  Google Scholar 

  • Snyder CH, Gutierrez-Cirlos FB and Trumpower BL (2000) Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc 1 complex. J Biol Chem 275: 13535–13541

    PubMed  CAS  Google Scholar 

  • Snyder CH, Merbitz-Zahradnik T, Link TA and Trumpower BL (1999) Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc 1 complex. J Bioenerg Biomembr 31: 235–242

    PubMed  CAS  Google Scholar 

  • Soriano GM, Ponamarev MV, Carrell CJ, **a D, Smith JL and Cramer WA (1999) Comparison of the cytochrome bc 1 complex with the anticipated structure of the cytochrome b 6 f complex: De plus ça change de plus c’est la même chose. J Bioenerg Biomemb 31, 201–213

    CAS  Google Scholar 

  • Stahl DA, Fishbain S, Klein M, Baker BJ and Wagner M (2002) Origins and diversification of sulfate-respiring microorganisms. Antoine Van Leeuwenhoek 81: 189–195

    CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413–418

    PubMed  CAS  Google Scholar 

  • Sun H and Trumpower BL (2003) Superoxide anion generation by the cytochrome bc 1 complex. Arch Biochem Biophys 419: 198–206

    PubMed  CAS  Google Scholar 

  • Trumpower BL (1990) The protonmotive Q cycle. J Biol Chem 265: 11409–11412

    PubMed  CAS  Google Scholar 

  • Trumpower BL (2002) A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc 1 complex. Biochim Biophys Acta 1555: 166–173

    PubMed  CAS  Google Scholar 

  • Trumpower BL and Gennis RB (1994) Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: The enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem 63: 675–716

    PubMed  CAS  Google Scholar 

  • Trumpower BL, Covian R and Gutierrez-Cirlos EB (2004) Half-of-the-sites reactivity of the yeast cytochrome bc 1 complex. Biochim Biophys Acta 1658: 33–33

    Google Scholar 

  • Valkova-Valchanova M, Darrouzet E, Moomaw C, Slaughter C and Daldal F (2000) Proteolytic cleavage of the Fe-S subunit hinge region of Rhodobacter capsulatus bc 1 complex: Effects of inhibitors and mutations. Biochemistry 39: 15484–15492

    PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B and Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25: 455–501

    PubMed  CAS  Google Scholar 

  • von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, Jensen LJ, Ward N and Bork P (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315: 1126–1130

    Google Scholar 

  • Wenz T, Covian R, Hellwig P, Macmillan F, Meunier B, Trumpower BL and Hunte C (2007) Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III. J Biol Chem 282: 3977–3988

    PubMed  CAS  Google Scholar 

  • Widger WR, Cramer WA, Herrmann RG and Trebst A (1984) Sequence homology and structural similarity between cytochrome b of mitochondrial complex III and the chloroplast b 6-f complex: Position of the cytochrome b hernes in the membrane. Proc Natl Acad Sci USA 81: 674–678

    PubMed  CAS  Google Scholar 

  • **a D, Yu C-A, Kim H, **a J-Z, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60–66

    PubMed  CAS  Google Scholar 

  • **ao KH, Yu L and Yu CA (2000) Confirmation of the involvement of protein domain movement during the catalytic cycle of the cytochrome bc 1 complex by the formation of an intersubunit disulfide bond between cytochrome b and the iron-sulfur protein. J Biol Chem 275: 38597–38604

    PubMed  CAS  Google Scholar 

  • **ong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    PubMed  CAS  Google Scholar 

  • Yap LL, Samoilova RI, Gennis RB and Dikanov SA (2006) Characterization of the exchangeable protons in the immediate vicinity of the semiquinone radical at the QH site of the cytochrome bo3 from Escherichia coli. J Biol Chem 281: 16879–16887

    PubMed  CAS  Google Scholar 

  • Yu J, and Le Brun (1998) Studies of the cytochrome subunits of menaquinone:cytochrome c reductase (bc complex). Evidence of the covalent attachment of the cytochrome b subunit. J Biol Chem 273: 8860–8866

    PubMed  CAS  Google Scholar 

  • Yu CA, **a D, Kim H, Deisenhofer J, Kachurin AM, Zhang L, Deng KP and Yu L (1998a) Three-dimensional structure and functions of bovine heart mitochondrial cytochrome bc 1 complex. Biofactors 8: 187–189

    PubMed  CAS  Google Scholar 

  • Yu CA, **a D, Kim H, Deisenhofer J, Zhang L, Kachurin AM and Yu L (1998b) Structural basis of functions of the mitochondrial cytochrome bc 1 complex. Biochim Biophys Acta 1365: 151–158

    PubMed  CAS  Google Scholar 

  • Zatsman AI, Zhang H, Gunderson WA, Cramer WA and Hendrich MP (2006) Heme-heme interactions in the cytochrome b 6 f complex: EPR spectroscopy and correlation with structure. J Am Chem Soc 128: 14246–14247

    PubMed  CAS  Google Scholar 

  • Zhang H, Primak A, Cape J, Bowman MK, Kramer DM and Cramer WA (2004) Characterization of the high-spin heme x in the cytochrome b 6 f complex of oxygenic photosynthesis. Biochemistry 43: 16329–16336

    PubMed  CAS  Google Scholar 

  • Zhang L, Yu L and Yu CA (1998) Generation of Superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J Biol Chem 273: 33972–33976

    PubMed  CAS  Google Scholar 

  • Zhang Z, Huang L, Shulmeister V, Chi Y, Kim K, Hung L, Crofts A, Berry E and Kim S (1998) Electron transfer by domain movement in cytochrome bc 1. Nature 392: 677–684

    PubMed  CAS  Google Scholar 

  • Zhu Z and Gunner MR (2005) Energetics of quinone-dependent electron and proton transfers in Rhodobacter sphaeroides photosynthetic reaction centers. Biochemistry 44: 82–96

    PubMed  CAS  Google Scholar 

  • Zusman LD and Beratan DN (1996) Two-electron transfer reactions in polar solvents. J Chem Phys 165–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Kramer, D.M., Nitschke, W., Cooley, J.W. (2009). The Cytochrome bc 1 and Related bc Complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex. In: Hunter, C.N., Daldal, F., Thurnauer, M.C., Beatty, J.T. (eds) The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8815-5_23

Download citation

Publish with us

Policies and ethics

Navigation