Log in

The evolution of Photosystem II: insights into the past and future

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. 1 GYr = 1 × 109 years.

Abbreviations

BChl:

Bacteriochlorophyll

BFR:

Bacterioferritin protein

Chl:

Chlorophyll

GYr:

Giga years (billion years)

EXAFS:

Extended X-ray absorption fine structure

MSP:

Manganese stabilizing protein

P680:

Reaction center chlorophyll

OEC:

Oxygen evolving complex

pdb:

Protein data bank accession number

Pheo:

Pheophytin

RC-I:

Type-I iron sulfur reaction center

RC-II:

Type-II pheophytin/quinone reaction center

TRX:

Thioredoxin

YZ :

Redox-active Tyrosine D1-Y161

ZnCe6 :

Zinc chlorin

References

  • Ahmad I, Cusanovich MA, Tollin G (1981) Laser flash-photolysis studies of electron-transfer between semi-quinone and fully reduced free flavins and horse heart cytochrome-C. Proc Natl Acad Sci USA 78:6724–6728

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 579:963–968

    Article  CAS  PubMed  Google Scholar 

  • Allen JF, Martin W (2007) Evolutionary biology—out of thin air. Nature 445:610–612

    Article  CAS  PubMed  Google Scholar 

  • Allwood A, Anderson M (2009) 3.45 billion year old stromatolite reef of Western Australia: a rich, large-scale record of early biota, strategies and habitats. Orig Life Evol Biosph 39:188–189

    Google Scholar 

  • Alyamani EJ, Brandt P, Pena JA, Major AM, Fox JG, Suerbaum S, Versalovic J (2007) Helicobacter hepaticus catalase shares surface-predicted epitopes with mammalian catalases. Microbiology-SGM 153:1006–1016

    Article  CAS  Google Scholar 

  • Anderson JM (2001) Does functional photosystem II complex have an oxygen channel? FEBS Lett 488:1–4

    Article  CAS  PubMed  Google Scholar 

  • Armstrong FA (2008) Why did nature choose manganese to make oxygen? Philos Trans R Soc B 363:1263–1270

    Article  CAS  Google Scholar 

  • Baaghil S, Lewin A, Moore GR, Le Brun NE (2003) Core formation in Escherichia coli bacterioferritin requires a functional. Biochemistry 42:14047–14056

    Article  CAS  PubMed  Google Scholar 

  • Babcock GT, Wikström M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  CAS  PubMed  Google Scholar 

  • Ball P (2008) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  CAS  PubMed  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  CAS  PubMed  Google Scholar 

  • Bellelli A, Brzezinski P, Arese M, Cutruzzola F, Silvestrini MC, Brunori M (1996) Electron transfer in zinc-reconstituted nitrite reductase from Pseudomonas aeruginosa. Biochem J 319:407–410

    CAS  PubMed  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang KD, Zouni A (2004) Crystal structure of cyanobacterial photosystem II at 3.2 angstrom resolution: a closer look at the Mn-cluster. Phys Chem Chem Phys 6:4733–4736

    Article  CAS  Google Scholar 

  • Bishop RE (2005) The lipid A palmitoyltransferase PagP: molecular mechanisms and role in bacterial pathogenesis. Mol Microbiol 57:900–912

    Article  CAS  PubMed  Google Scholar 

  • Bjorn LO, Govindjee (2009) The evolution of photosynthesis and chloroplasts. Curr Sci 96:1466–1474

    Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33:91–111

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Ltd, London

    Book  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97

    Article  CAS  PubMed  Google Scholar 

  • Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279:22809–22819

    Article  CAS  PubMed  Google Scholar 

  • Bychkova VE, Pain RH, Ptitsyn OB (1988) The molten globule state is involved in the translocation of proteins across membranes. FEBS Lett 238:231–234

    Article  CAS  PubMed  Google Scholar 

  • Castresana J, Saraste M (1995) Evolution of energetic metabolism—the respiration-early hypothesis. Trends Biochem Sci 20:443–448

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Eggink LL, Hoober JK, Larkum AWD (2005) Influence of structure on binding of chlorophylls to peptide ligands. J Am Chem Soc 127:2052–2053

    Article  CAS  PubMed  Google Scholar 

  • Conlan B (2008) Designing photosystem II: molecular engineering of photo-catalytic proteins. Photosynth Res 98:687–700

    Article  CAS  PubMed  Google Scholar 

  • Conlan B, Cox N, Su JH, Hillier W, Messinger J, Lubitz W, Dutton PL, Wydrzynski T (2009) Photo-catalytic oxidation of a di-nuclear manganese centre in an engineered bacterioferritin ‘reaction centre’. Biochim Biophys Acta Bioenerg 1787:1112–1121

    Article  CAS  Google Scholar 

  • Cowan JA, Gray HB (1989) Synthesis and properties of metal-substituted myoglobins. Inorg Chem 28:2074–2078

    Article  CAS  Google Scholar 

  • Dasgupta J, Ananyev GM, Dismukes GC (2008) Photoassembly of the water-oxidizing complex in photosystem II. Coord Chem Rev 252:347–360

    Article  CAS  PubMed  Google Scholar 

  • Dau H, Haumann M (2007) Eight steps preceding O–O bond formation in oxygenic photo synthesis—a basic reaction cycle of the photosystem II manganese complex. Biochim Biophys Acta Bioenerg 1767:472–483

    Article  CAS  Google Scholar 

  • Dautant A, Meyer JB, Yariv J, Precigoux G, Sweet RM, Kalb AJ, Frolow F (1998) Structure of a monoclinic crystal form of cytochrome b1 (bacterioferritin) from E. coli. Acta Crystallogr D 54:16–24

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Barber J (2004) Analysis of the structure of the PsbO protein and its implications. Photosynth Res 81:329–343

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Roman A (2005) Structure and evolution of the extrinsic proteins that stabilize the oxygen-evolving engine. Photochem Photobiol Sci 4:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Blankenship RE (2005) The origin and evolution of photosynthetic oxygen production. In: Wydrzynski T, Satoh K (eds) Photosystem II: the water:plastoquinone oxidoreductase in photosynthesis Springer, Berlin (Printed in the Netherlands)

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175

    Article  CAS  PubMed  Google Scholar 

  • Eggink LL, Hoober JK (2000) Chlorophyll binding to peptide maquettes containing a retention motif. J Biol Chem 275:9087–9090

    Article  CAS  PubMed  Google Scholar 

  • Fahnenschmidt M, Bittl R, Schlodder E, Haehnel W, Lubitz W (2001) Characterization of de novo synthesized four-helix bundle proteins with metalloporphyrin cofactors. Phys Chem Chem Phys 3:4082–4090

    Article  CAS  Google Scholar 

  • Falkowski PG (2006) Evolution—tracing oxygen’s imprint on Earth’s metabolic evolution. Science 311:1724–1725

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Faller P, Fufezan C, Rutherford AW (2005) Side-path electron donors: cytochrome b559, chloropyll Z and β-carotene. In: Wydrzynski T, Satoh K (eds) Photosystem II the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 347–365

    Google Scholar 

  • Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson T, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Fromme P, Kern J, Loll B, Biesiadka J, Saenger W, Witt HT, Krauss N, Zouni A (2002) Functional implications on the mechanism of the function of photosystem II including water oxidation based on the structure of photosystem II. Philos Trans R Soc Lond B 357:1337–1344

    Article  CAS  Google Scholar 

  • Gabdulkhakov A, Guskov A, Broser M, Kern J, Muh F, Saenger W, Zouni A (2009) Probing the accessibility of the Mn(4)Ca cluster in photosystem II: channels calculation, noble gas derivatization, and cocrystallization with DMSO. Structure 17:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Gugliemi G, Cohen-Bazire G, Brynat DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189

    Google Scholar 

  • Guskov A, Gabdulkhakov A, Broser M, Kern J, Zouni A, Saenger W (2009a) Quinones, lipids, channels, and chloride ion-new insights based on the structure of Cyanobacterial 0 Photosystem 11 at 2.9 angstrom resolution. J Biomol Struct Dyn 26:120

    Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009b) Cyanobacterial photosystem II at 2.9-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    Article  CAS  PubMed  Google Scholar 

  • Hansel A, Pattus F, Jurgens UJ, Tadros MH (1998) Cloning and characterization of the genes coding for two porins in the unicellular cyanobacterium Synechococcus PCC 6301. Biochim Biophys Acta Gene Struct Expr 1399:31–39

    CAS  Google Scholar 

  • Hay S, Wydrzynski T (2005) Conversion of the Escherichia coli cytochrome b 562 to an archetype cytochrome b: a mutant with bis-histidine ligation of heme iron. Biochemistry 44:431–439

    Article  CAS  PubMed  Google Scholar 

  • Hay S, Wallace BB, Smith TA, Ghiggino KP, Wydrzynski T (2004) Protein engineering of cytochrome b(562) for quinone binding and light-induced electrons transfer. Proc Natl Acad Sci USA 101:17675–17680

    Article  CAS  PubMed  Google Scholar 

  • Hillier W, Messinger J (2005) Mechanism of photosynthetic water oxygen production. In: Wydrzynski T, Satoh K (eds) Photosystem II the light-driven water: plastoquinone oxidoreductase. Springer, Dordrecht, pp 567–608

    Google Scholar 

  • Hillier W, Hendry G, Burnap RL, Wydrzynski T (2001) Substrate water exchange in photosystem II depends on the peripheral proteins. J Biol Chem 276:46917–46924

    Article  CAS  PubMed  Google Scholar 

  • Hingorani K, Conlan B, Hillier W, Wydrzynski T (2009) Elucidating photochemical pathways of tyrosine oxidation in an engineered bacterioferritin ‘reaction centre’. Aust J Chem 62:1351–1354

    Article  CAS  Google Scholar 

  • Ho FM, Styring S (2008) Access channels and methanol binding site to the CaMn4 cluster in Photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta Bioenerg 1777:140–153

    Article  CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Hughes JL, Razeghifard R, Logue M, Oakley A, Wydrzynski T, Krausz E (2006) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658

    Article  CAS  PubMed  Google Scholar 

  • Ishikita H, Saenger W, Loll B, Biesiadka J, Knapp EW (2006) Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry 45:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Kalman L, Williams JC, Allen JP (2008) Comparison of bacterial reaction centers and photosystem II. Photosynth Res 98:643–655

    Article  CAS  PubMed  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-angstrom resolution. Proc Natl Acad Sci USA 100:98–103

    Article  CAS  PubMed  Google Scholar 

  • Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903

    Article  CAS  PubMed  Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 2. Determination of structural features that stabilize complex formation and their implications for the structure of the subunit complex. Biochemistry 37:3418–3428

    Article  CAS  PubMed  Google Scholar 

  • Klotz MG, Hutcheson SW (1992) Multiple periplasmic catalases in phytopathogenic strains of pseudomonas-syringae. Appl Environ Microbiol 58:2468–2473

    CAS  PubMed  Google Scholar 

  • Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    Article  CAS  PubMed  Google Scholar 

  • Krishtalik LI (1986) Energetics of multielectron reactions. Photosynthetic oxygen evolution. Biochim Biophys Acta 849:162–171

    Article  CAS  Google Scholar 

  • Lebrun NE, Andrews SC, Guest JR, Harrison PM, Moore GR, Thomson AJ (1995) Identification of the ferroxidase center of Escherichia coli bacterioferritin. Biochem J 312:385–392

    CAS  Google Scholar 

  • Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • Limburg J, Vrettos JS, Chen HY, de Paula JC, Crabtree RH, Brudvig GW (2001) Characterization of the O-2-evolving reaction catalyzed by [(terpy)(H2O)Mn-III(O)(2)Mn-IV(OH2)(terpy)](NO3) (terpy = 2,2′:6,2″-terpyridine). J Am Chem Soc 123:423–430

    Article  CAS  PubMed  Google Scholar 

  • Ling JS, Sahlin M, Sjoberg BM, Loehr TM, Sandersloehr J (1994) Dioxygen is the source of the Mu-Oxo bridge in iron ribonucleotide reductase. J Biol Chem 269:5595–5601

    CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 angstrom resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Lundberg M, Siegbahn PEM (2004) Theoretical investigations of structure and mechanism of the oxygen-evolving complex in PSII. Phys Chem Chem Phys 6:4772–4780

    Article  CAS  Google Scholar 

  • Mauzerall D (1992) Light, iron, Sam Granick, and the origin of life. Photosynth Res 33:163–170

    Article  CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  CAS  PubMed  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW, Loach PA (1998) Reconstitution of core light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides. 1. Minimal requirements for subunit formation. Biochemistry 37:3411–3417

    Article  CAS  PubMed  Google Scholar 

  • Mennenga A, Gartner W, Lubitz W, Gorner H (2006) Effects of noncovalently bound quinones on the ground and triplet states of zinc chlorins in solution and bound to de novo synthesized peptides. Phys Chem Chem Phys 8:5444–5453

    Article  CAS  PubMed  Google Scholar 

  • Messinger J, Seaton G, Wydrzynski T, Wacker U, Renger G (1997) S-3 state of the water oxidase in photosystem II. Biochemistry 36:6862–6873

    Article  CAS  PubMed  Google Scholar 

  • Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159:228–237

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145

    Article  CAS  PubMed  Google Scholar 

  • Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Mol Microbiol 6:435–442

    Article  CAS  PubMed  Google Scholar 

  • Noy D, Dutton PL (2006) Design of a minimal polypeptide unit for bacteriochlorophyll binding and self-assembly based on photosynthetic bacterial light-harvesting proteins. Biochemistry 45:2103–2113

    Article  CAS  PubMed  Google Scholar 

  • Noy D, Discher BM, Rubtsov IV, Hochstrasser RA, Dutton PL (2005) Design of amphiphilic protein maquettes: enhancing maquette functionality through binding of extremely hydrophobic cofactors to lipophilic domains. Biochemistry 44:12344–12354

    Article  CAS  PubMed  Google Scholar 

  • Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386

    Article  CAS  PubMed  Google Scholar 

  • Pacello F, Ceci P, Ammendola S, Pasquali P, Chiancone E, Battistoni A (2008) Periplasmic Cu, Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species. Biochim Biophys Acta 1780:226–232

    CAS  PubMed  Google Scholar 

  • Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    Article  CAS  PubMed  Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McClain CR, McShea DW, Novack-Gottshall PM, Smith FA, Stempien JA, Wang SC (2009) Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci USA 106:24–27

    Article  CAS  PubMed  Google Scholar 

  • Pereira MM, Santana M, Teixeira M (2001) A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta Bioenerg 1505:185–208

    Article  CAS  Google Scholar 

  • Poulsen AK, Rompel A, McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II. Angew Chem Int Ed 44:6916–6920

    Article  CAS  Google Scholar 

  • Rabanal F, Gibney BR, DeGrado WF, Moser CC, Dutton PL (1996) Engineering photosynthesis: synthetic redox proteins. Inorg Chim Acta 243:213–218

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527

    Article  CAS  PubMed  Google Scholar 

  • Rau HK, Snigula H, Struck A, Robert B, Scheer H, Haehnel W (2001) Design, synthesis and properties of synthetic chlorophyll proteins. Eur J Biochem 268:3284–3295

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Blankenship RE (2004) The evolutionary development of the protein complement of Photosystem 2. Biochim Biophys Acta Bioenerg 1655:133–139

    Article  CAS  Google Scholar 

  • Raymond J, Blankenship RE (2008) The origin of the oxygen-evolving complex. Coord Chem Rev 252:377–383

    Article  CAS  Google Scholar 

  • Raymond J, Segre D (2006) The effect of oxygen on biochemical networks and the evolution of complex life. Science 311:1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620

    Article  CAS  PubMed  Google Scholar 

  • Razeghifard AR, Wydrzynski T (2003) Binding of Zn-chlorin to a synthetic four-helix bundle peptide through histidine ligation. Biochemistry 42:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Waterbury J, Cohnen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436

    Google Scholar 

  • Rivas JD, Balsera M, Barber J (2004) Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9:18–25

    Article  CAS  Google Scholar 

  • Sadekar S, Raymond J, Blankenship RE (2006) Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol 23:2001–2007

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Uchida A, Nakayama K, Okada M (2001) Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol 42:906–911

    Article  CAS  PubMed  Google Scholar 

  • Sauer K, Yachandra VK (2002) A possible evolutionary origin for the Mn-4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci USA 99:8631–8636

    Article  CAS  PubMed  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:R567–R574

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, Moser CC, Rabanal F, Dutton PL (1998) Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proc Natl Acad Sci USA 95:10465–10470

    Article  CAS  PubMed  Google Scholar 

  • Short KA, Blakemore RP (1989) Periplasmic superoxide dismutases in aquaspirillum-magnetotacticum. Arch Microbiol 152:342–346

    Article  CAS  PubMed  Google Scholar 

  • Shutovaa T, Klimov VV, Anderssona B, Samuelsson G (2007) A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of Photosystem II. Biochim Biophys Acta – Bioenergetics 1767(6):434–440

    Article  CAS  Google Scholar 

  • Sleep NH, Bird DK (2008) Evolutionary ecology during the rise of dioxygen in the Earth’s atmosphere. Philos Trans R Soc B 363:2651–2664

    Article  CAS  Google Scholar 

  • Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B (2007) S-layers as a basic building block in a molecular construction kit. FEBS J 274:323–334

    Article  CAS  PubMed  Google Scholar 

  • Smith JMA, Quirk AV, Plank RWH, Diffin FM, Ford GC, Harrison PM (1988) The identity of Escherichia coli bacterioferritin and cytochrome-B1. Biochem J 255:737–740

    CAS  PubMed  Google Scholar 

  • Sproviero EM, Gascon JA, McEvoy JP, Brudvig GW, Batista VS (2008) Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II. J Am Chem Soc 130:3428–3442

    Article  CAS  PubMed  Google Scholar 

  • Sudha BP, Dixit N, Moy VT, Vanderkooi JM (1984) Reactions of excited-state cytochrome-C derivatives—delayed fluorescence and phosphorescence of zinc, tin, and metal-free cytochrome-C at room-temperature. Biochemistry 23:2103–2107

    Article  Google Scholar 

  • Tagore R, Crabtree RH, Brudvig GW (2008) Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg Chem 47:1815–1823

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Inoue-Kashino N, Ozawa S, Takahashi Y, Kashino Y, Satoh K (2009) Photosystem II complex in vivo is a monomer. J Biol Chem 284:15598–15606

    Article  CAS  PubMed  Google Scholar 

  • Tommos C, Babcock GT (1998) Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31:18–25

    Article  CAS  Google Scholar 

  • Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta Bioenerg 1458:199–219

    Article  CAS  Google Scholar 

  • Twitchett MB, Ferrer JC, Siddarth P, Mauk AG (1997) Intramolecular electron transfer kinetics of a synthetic flavocytochrome c. J Am Chem Soc 119:435–436

    Article  CAS  Google Scholar 

  • Vanderkooi JM, Adar F, Erecinska M (1976) Metallocytochromes c: characterization of electronic absorption and emission spectra of Sn4+ and Zn2+ cytochromes c. Eur J Biochem 64:381–387

    Article  CAS  PubMed  Google Scholar 

  • Vrettos JS, Stone DA, Brudvig GW (2001) Quantifying the ion selectivity of the Ca2+ site in photosystem II: evidence for direct involvement of Ca2+ in O2 formation. Biochemistry 40:7937–7945

    Article  CAS  PubMed  Google Scholar 

  • Williamson AK (2008) Structural and functional aspects of the MSP (PsbO) and study of its differences in thermophilic versus mesophilic organisms. Photosynth Res 98:365–389

    Article  CAS  PubMed  Google Scholar 

  • Williamson AK, Liggins JR, Hillier W, Wydrzynski T (2007) The importance of protein-protein interactions for optimising oxygen activity in photosystem II: reconstitution with a recombinant thioredoxin-manganese stabilising protein. Photosynth Res 92:305–314

    Article  CAS  PubMed  Google Scholar 

  • Wydrzynski T, Satoh K (2005) Photosystem II: the water:plastoquinone oxidoreductase in photosynthesis. In: Govindjee (ed) Advances in photosynthesis and respiration, vol 25. Springer, The Netherlands

    Google Scholar 

  • Wydrzynski T, Satoh K (2006) Photosystem II, the light driven water:plastoquinone oxidoreductase. Springer, Dordrecht

    Google Scholar 

  • Wydrzynski T, Hillier W, Messinger J (1996) On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. Physiol Plant 96:342–350

    Article  CAS  Google Scholar 

  • Wydrzynski T, Hillier W, Conlan B (2007) Engineering model proteins for Photosystem II function. Photosynth Res 94:225–233

    Article  CAS  PubMed  Google Scholar 

  • **ong J, Bauer CE (2002a) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521

    Article  CAS  PubMed  Google Scholar 

  • **ong J, Bauer CE (2002b) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link between respiration and photosynthesis. J Mol Biol 322:1025–1037

    Article  CAS  PubMed  Google Scholar 

  • **ong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    Article  CAS  PubMed  Google Scholar 

  • Yachandra VK, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96:2927–2950

    Article  CAS  PubMed  Google Scholar 

  • Yang XO, Le Brun NE, Thomson AJ, Moore CR, Chasteen ND (2000) The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Biochemistry 39:4915–4923

    Article  CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  CAS  PubMed  Google Scholar 

  • Yariv J, Kalb AJ, Sperling R, Bauminger ER, Cohen SG, Ofer S (1981) The composition and the structure of bacterioferritin of Escherichia coli. Biochem J 197:171–175

    CAS  PubMed  Google Scholar 

  • Zein S, Kulik LV, Yano J, Kern J, Pushkar Y, Zouni A, Yachandra VK, Lubitz W, Neese F, Messinger J (2008) Focusing the view on nature’s water-splitting catalyst. Philos Trans R Soc B 363:1167–1177

    Article  CAS  Google Scholar 

  • Zemel H, Hoffman BM (1981) Long-range triplet-triplet energy-transfer within metal-substituted hemoglobins. J Am Chem Soc 103:1192–1201

    Article  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warwick Hillier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, A., Conlan, B., Hillier, W. et al. The evolution of Photosystem II: insights into the past and future. Photosynth Res 107, 71–86 (2011). https://doi.org/10.1007/s11120-010-9559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9559-3

Keywords

Navigation