Log in

Design of a W-band High-PAE Class A & AB Power Amplifier in 150 nm GaAs Technology

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Nanometer scale power amplifiers (PA) at sub-THz suffer from severe parasitic effects that lead to experience limited maximum frequency and reduced power performance at the device transceiver front end. The integrated circuits researchers proposed different PA design architecture combinations at scaled down technologies to overcome these limitations. Although the designs meet the minimum requirements, the power added efficiency (PAE) of PA is still quite low. In this paper, a W-band single-ended common-source (CS) and cascode integrated 3-stage 2-way PA design is proposed. The design integrated different key design methodologies to mitigate the parasitic; such as combined Class AB and Class A stages for gain-boosting and efficiency enhancement, Wilkinson power combiner for higher output power, linearity, and bandwidth, and transmission line (TL)-based wide band matching network for better inter-stage matching and compact size. The proposed PA design is validated using UMS 150-nm GaAs pHEMT using advanced design system (ADS) simulator. The results show that the proposed PA achieved a gain of 20.1 dB, an output power of 17.2 dBm, a PAE of 33% and a 21 GHz bandwidth at 90 GHz Sub-THz band. The PA layout consumes only 5.66 × 2.51 mm2 die space including pads. Our proposed PA design will boost the research on sub-THz integrated circuits research and will smooth the wide spread adoption of 6G in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BW3dB :

3-dB bandwidth

CE:

Common emitter

CG:

Common gate

CS:

Common source

CMOS:

Complementary metal-oxide-semiconductor

Cu:

Copper

DC-IV:

Direct-Current Current-Voltage

FET:

Field effect transistor

ft/fmax :

Transit frequency/maximum oscillation frequency

GaAs:

Gallium arsenide

IC:

Integrated circuit

ML:

Microstrip lines

mmW:

Millimeter-wave

PA:

Power amplifier

pHEMT:

Pseudomorphic high electron mobility transistor

Psat :

Saturated output power

PAE:

Power added efficiency

Q:

Matching locci

SOI:

Silicon on insulator

THz:

Terahertz

TL:

Transmission lines

2DEG:

Two-dimensional electron gas

3D:

Three Dimension

5G:

Fifth-generation

6G:

Sixth-generation

References

  1. A. Kumar, M. Gupta, A review on activities of fifth generation mobile communication system. Alexandria Eng. J. 57(2), 1125–1135 (2018)

    Article  Google Scholar 

  2. Y. Huang, Y. Shen, J. Wang, From Terahertz Imaging to Terahertz Wireless Communications, Engineering, 22 (2023), 106–124

  3. M.A.S. Bhuiyan, M.T.I. Badal, M.B.I. Reaz, M.L. Crespo, A. Cicuttin, Design architectures of the CMOS Power Amplifier for 2.4 GHz ISM Band Applications: an overview. Electronics. 8(5), 477 (2019)

    Article  CAS  Google Scholar 

  4. A. Pärssinen, M.-S. Alouini, M. Berg, T. Kürner, P. Kyösti, M.E. Leinonen, M. Matinmikko-Blue, E. McCune, U. Pfeiffer, P. Wambacq, White Paper on RF Enabling 6G: Opportunities and Challenges from Technology to Spectrum, vol. 13 (Oulu, University of Oulu, 2021)

  5. Z. Griffith, M. Urteaga, P. Rowell, A Compact 140-GHz, 150-mW high-Gain Power Amplifier MMIC in 250-nm InP HBT. IEEE Microwave Wirel. Compon. Lett. 29(4), 282–284 (2019)

    Article  Google Scholar 

  6. Y. Liu, B. Zhang, Y. Feng, X. Zhao, J. Wang, D. Ji, Y. Yang, and Y.Fan, A G-band Balanced Power Amplifier based on InP HEMT Technology, in 2020 IEEE MTT-S International Wireless Symposium (IWS),Shanghai, 20–23 September, 2020, pp. 1–3

  7. M. Ćwikliński, P. Brückner, S. Leone, C. Friesicke, H. Maßler, R. Lozar, S. Wagner, R. Quay, O. Ambacher, DBand and G-Band High-Performance GaN Power Amplifier MMICs. IEEE Trans. Microwave Theory Tech. 67(12), 5080–5089 (2019)

    Article  Google Scholar 

  8. F. Thome, A. Leuther, A 75–305-GHz Power Amplifier MMIC with 10–14.9-dBm pout in a 35-nm InGaAs mHEMT Technology. IEEE Microwave Wirel. Compon. Lett. 31(6), 741–743 (2021)

    Article  Google Scholar 

  9. V.D. Tran, S. Chakraborty, J. Mihaljevic, S. Mahon, M. Heimlich, A W-band driver amplifier in 0.1 µm pHEMT Gallium Arsenide process, in 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 28 November – 1 December, 2021, pp. 46–48

  10. W. Zhu, J. Wang, R. Wang, J. Zhang, C. Li, S. Yin, Y. Wang, A 1V 32.1 dBm 92-to-102GHz Power Amplifier with a Scalable 128-to-1 Power Combiner Achieving 15% Peak PAE in a 65nm Bulk CMOS Process, in 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, 20–26 February, 2022, pp. 318–320

  11. I. Petricli, D. Riccardi, A. Mazzanti, SiGe BiCMOS Power Amplifier with 16.8dBm P1dB and 17.1% PAE enhanced by current-clam** in multiple common-base stages. IEEE Microwave Wirel. Compon. Lett. 31(3), 288–291 (2021)

  12. E. Camargo, J. Schellenberg, L. Bui, N. Estella, F-Band, GaN Power Amplifiers, in 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 10–15 June 2018, pp. 753–756

  13. S. Daneshgar, J.F. Buckwalter, Compact Series Power combining using Subquarter-Wavelength baluns in Silicon Germanium at 120 GHz. IEEE Trans. Microwave Theory Tech. 66(11), 4844–4859 (2018)

    Google Scholar 

  14. P. Rodríguez-Vázquez, J. Grzyb, B. Heinemann, U.R. Pfeiffer, A 16-QAM 100-Gb/s 1-M Wireless Link with an EVM of 17% at 230 GHz in an SiGe Technology. IEEE Microwave Wirel. Compon. Lett. 29(4), 297–299 (2019)

    Article  Google Scholar 

  15. P. Rodríguez-Vázquez, J. Grzyb, B. Heinemann, U.R. Pfeiffer, A QPSK 110-Gb/s polarization-diversity MIMO Wireless Link with a 220–255 GHz tunable LO in a SiGe HBT Technology. IEEE Trans. Microwave Theory Tech. 68(9), 3834–3851 (2020)

    Article  Google Scholar 

  16. D. Simic, P. Reynaert, A 14.8 dBm 20.3 dB Power Amplifier for D-band Applications in 40 nm CMOS, in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 10–12 June, 2018, pp. 232–235

  17. V.A. Bespalov, N.A. Dyuzhev, V.Y. Kireev, Possibilities and limitations of CMOS Technology for the production of various Microelectronic systems and devices. Nanobiotechnol. Rep. 17(1), 24–38 (2018)

    Article  Google Scholar 

  18. G. Kumar, S. Agrawal, CMOS limitations and futuristic carbon allotropes, in 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, 3–5 October, 2017, pp. 68–71

  19. K. Seshan, Chap. 2 - limits and hurdles to continued CMOS scaling, in Handbook of Thin Film Deposition, 4th edn., ed. by K. Seshan, D. Schepis (William Andrew Publishing, Cambridge, MA, 2018), pp. 19–41

    Chapter  Google Scholar 

  20. Y. Taur, D.A. Buchanan, W. Chen, D.J. Frank, K.E. Ismail, S.-H. Lo, G.A. Sai-Halasz, R.G. Viswanathan, H.-J.C. Wann, S.J. Wind, H.-S. Wong, CMOS scaling into the nanometer regime, Proceedings of the IEEE, 85(4) (1997), 486–504

  21. V. Camarchia, R. Quaglia, A. Piacibello, D.P. Nguyen, H. Wang, A.-V. Pham, A review of technologies and Design techniques of Millimeter-Wave Power amplifiers. IEEE Trans. Microwave Theory Tech. 68(7), 2957–2983 (2020)

    Article  Google Scholar 

  22. R. Karpagam, S.L.S. Vimalraj, G.K. Sathishkumar, V. Megala, Y. Gowthami, B. Balaji, DC and RF Performance Analysis of Extended Field plated AlGaN/GaN/ β-Ga2O3 HEMT. Trans. Electr. Electron. Mater. 24, 459–468 (2023)

    Article  Google Scholar 

  23. B.V. Krsihna, A. Gangadhar, S. Ravi, D. Mohan, A.K. Panigrahy, V.R. Rajeswari, M.D. Prakash, A highly sensitive graphene-based field effect transistor for detection of myoglobin. Silicon. 14, 11741–11748 (2022)

    Article  CAS  PubMed Central  Google Scholar 

  24. C. Meriga, R.T. Ponnuri, B.V.V. Satyanarayana, A.A.K. Gudivada, A.K. Panigrahy, M.D. Prakash, A novel teeth junction less gate all around FET for improving electrical characteristics. Silicon. 14, 1979–1984 (2022)

    Article  CAS  Google Scholar 

  25. M.D. Prakash, B.V. Krsihna, B.V.V. Satyanarayana, N.A. Vignesh, A.K. Panigrahy, S. Ahmadsaidulu, A study of an ultrasensitive label free silicon nanowire FET biosensor for Cardiac Troponin I detection. Silicon. 14, 5683–5690 (2021)

    Article  Google Scholar 

  26. R. Yuvaraj, A. Karuppannan, A.K. Panigrahy, R. Swain, Design and analysis of gate stack silicon-on-insulator nanosheet FET for low power applications. Silicon. 15, 1739–1746 (2023)

    CAS  Google Scholar 

  27. M. Amani, A.K. Panigrahy, A. Choubey, S.B. Choubey, V.B. Sreenivasulu, D.V. Nair, R. Swain, Design and comparative analysis of FD-SOI FinFET with dual-dielectric spacers for high speed switching applications. Silicon, 2023

  28. A.K. Panigrahy, T. Ghosh, S.R.K. Vanjari, S.G. Singh, Oxidation resistive, CMOS compatible copper-based alloy ultrathin films as a Superior Passivation mechanism for achieving 150°C Cu–Cu Wafer on Wafer Thermocompression Bonding. IEEE Trans. Electron. Devices, 64(3) 2017

  29. F. Wang, H. Wang, N.-W. An, Transformer Based Wilkinson Power Divider in CMOS, in 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 22–27 May, 2016, pp. 1–4

  30. M.B. Jamshidi, S. Roshani, J. Talla, S. Roshani, Z. Peroutka, Size reduction and performance improvement of a microstrip Wilkinson power divider using a hybrid design technique. Sci. Rep. 11(1), 7773 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C.M. Wang, J. Du, L. Li, R.-F. Cao, C. Pang, Y. Cui, Design of the Wilkinson power divider with multi harmonic suppression. Frequenz. 78(1–2), 31–35 (2024)

    Article  Google Scholar 

  32. B.-Z. Lu, Y.-C. Wu, C.-C. Chiong, H. Wang, A 78–93 GHz Power Amplifier with 19.6-dBm Psat and 12.8% PAEpeak in 0.1-µm GaAs pHEMT for Radio Astronomical Receiver System, in 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nan**g, 28–30 August, 2019, pp. 1–3

  33. J.Y. Lee, M. Zhu, K. Yang, Y.C. Lee, I.I. Idrus, Wide-Slot Tri-Band Patch Antenna Fed by Quarter Wave Transformer for Biomedical Applications, in 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Suzhou, 16–18 May, 2022, pp. 232–235

  34. K. Kim, K. Lee, S.-U. Choi, J. Kim, C.-G. Choi, H.-J. Song, A 97–107 GHz Triple-Stacked-FET Power Amplifier with 23.7dB Peak Gain, 15.1dBm PSAT, and 18.6% PAEMAX in 28-nm FD-SOI CMOS, in 2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Denver, CO, 19–21 June, 2022, pp. 183–186

  35. H.S. Son, J.Y. Jang, D.M. Kang, H.J. Lee, C.S. Park, A 109 GHz CMOS Power Amplifier with 15.2 dBm psat and 20.3 dB Gain in 65-nm CMOS Technology. IEEE Microwave Wirel. Compon. Lett. 26(7), 510–512 (2016)

    Article  Google Scholar 

  36. H.S. Son, T.H. Jang, S.H. Kim, K.P. Jung, J.H. Kim, C.S. Park, Pole-Controlled Wideband 120 GHz CMOS Power Amplifier for Wireless Chip-to-Chip Communication in 40-nm CMOS process. IEEE Trans. Circuits Syst. II Express Briefs. 66(8), 1351–1355 (2019)

    Google Scholar 

  37. F. Zhu, G. Luo, A W-Band Balanced Power Amplifier in 0.1-um GaAs PHEMT Process, in 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, 20–23 September, 2020, pp. 1–3

  38. W. Wu, J. Gu, X. Wang, F. Yao, W. Sui, A Ka-Band 150 nm GaAs pHEMT Power Amplifier Monolithic Microwave Integrated Circuit with Novelly designed output power combining networks. Nanosci. Nanatechnol. Lett. 6(9), 812–816 (2014)

    Article  Google Scholar 

  39. M.K. Kazimierczuk, RF Power Amplifiers, 2nd edn. (John Wiley & Sons Ltd, Chichester, West Sussex, 2014)

    Book  Google Scholar 

  40. H. Wang, K. Choi, B. Abdelaziz, M. Eleraky, B. Lin, E. Liu, Y. Liu, H. Jalili, M. Ghorbanpoor, C. Chu, T.Y. Huang, N.S. Mannem, J. Park, J. Lee, D. Munzer, S. Li, F. Wang, A.S. Ahmed, C. Snyder, H.T. Nguyen, M.E.D. Smith, Power Amplifiers Performance Survey 2000-Present, in [Online], https://ideas.ethz.ch/Surveys/pa-survey.html

  41. D.M. Pozar, Microwave Engineering, 4th edn. (John Wiley & Sons, Inc, Hoboken, New Jersey, 2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank United Monolithic Semiconductors (UMS) for providing the PDK file to support the research. This research is financially supported by **amen University Malaysia (Project code: XMUMRF/2021-C8/IECE/0021). The authors would like to thank the reviewers’ constructive suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Arif Sobhan Bhuiyan or Mahdi H. Miraz.

Ethics declarations

Conflict of Interest/Competing Interests

The authors declare no conflicts of interests/competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Wu, D., Guo, X. et al. Design of a W-band High-PAE Class A & AB Power Amplifier in 150 nm GaAs Technology. Trans. Electr. Electron. Mater. 25, 304–313 (2024). https://doi.org/10.1007/s42341-024-00513-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-024-00513-8

Keywords

Navigation