Log in

Optimum design of a new ultra-wideband LNA using heuristic multiobjective optimization

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper presents an optimum design of an ultra-wideband (UWB) 2.5–10.5-GHz low-noise amplifier (LNA) in 180-nm and 65-nm radiofrequency (RF)-complementary metal–oxide–semiconductor (CMOS) technology. A novel input matching network employing resistive–inductive feedback and a noise-canceling technique is proposed to achieve broadband matching as well as a low noise figure (NF). Moreover, a current-reused structure and the inductive peaking technique are applied in the proposed LNA to reduce its power consumption and provide high, flat gain. The proposed UWB-LNA is optimized using heuristic multiobjective optimization based on inclined planes system optimization (IPO) and particle swarm optimization (PSO) as simulation-based evolutionary techniques. The proposed UWB-LNA is designed and simulated using HSPICE and Cadence Spectre RF. The postlayout simulation results show an input return loss (S11) of less than −10 dB, a flat power gain (S21) of 13.2 ± 0.5 and 14 ± 0.5 dB, and an NF below 5 and 2.5 dB over the whole UWB band when implemented in 180-nm and 65-nm CMOS technology, respectively. The UWB-LNA consumes 7.2 and 9.5 mW from a 1.8-V power supply when implemented in 180-nm and 65-nm CMOS technology, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Yu, Y.-H., Chen, Y.-J.E., Heo, D.: A 0.6-V low power UWB CMOS LNA. IEEE Microw. Wirel. Compon. Lett. 17(3), 229–231 (2007)

    Article  Google Scholar 

  2. Zhang, Z., Dinh, A., Chen, L., et al.: Wide range linearity improvement technique for linear wideband LNA. IEICE Electron. Express 14(4), 1–10 (2017)

    Article  Google Scholar 

  3. Sahafi, A., Sobhi, J., Koozehkanani, Z.D.: Linearity improvement of gm-boosted common gate LNA: analysis to design. Microelectron. J. 56, 156–162 (2016)

    Article  Google Scholar 

  4. Ballweber, B., Gupta, R., Allstot, D.: A fully integrated 0.5–5.5 GHz CMOS distributed amplifier. IEEE J. Solid State Circuits 35(2), 231–239 (2000)

    Article  Google Scholar 

  5. Shin, S.-C., Lin, C.-S., Tsai, M.-D., et al.: A low-voltage and variable-gain distributed amplifier for 3.1–10.6 GHz UWB systems. IEEE Microw. Wirel. Compon. Lett. 16(4), 179–181 (2006)

    Article  Google Scholar 

  6. Bhattacharyya, K., Deen, M.: Microwave CMOS traveling wave amplifiers: performance and temperature effects. IEEE Microw. Wirel. Compon. Lett. 14(4), 142–144 (2004)

    Article  Google Scholar 

  7. Jussila, J., Sivonen, P.: A 1.2-V highly linear balanced noise-cancelling LNA in 0.13 µm CMOS. IEEE J. Solid State Circuits 43(3), 579–587 (2008)

    Article  Google Scholar 

  8. Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., et al.: Wideband balun-LNA with simultaneous output balancing, noise-cancelling and distortion-cancelling. IEEE J. Solid State Circuits 43(6), 1341–1350 (2008)

    Article  Google Scholar 

  9. Nguyen, T.-K., Kim, C.-H., Ihm, G.-J., et al.: CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 52(5), 1433–1442 (2004)

    Article  Google Scholar 

  10. Papadimitriou, A., Bucher, M.: Multi-objective low-noise amplifier optimization using analytical model and genetic computation. Circuits Syst. Signal Process. 36(12), 4963–4993 (2017)

    Article  MATH  Google Scholar 

  11. Kolakaluri, S., Nagura, S.S., Kar, R., et al.: Optimization of low noise amplifier using particle swarm optimization. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 2055–2058

  12. Mallick, S., Akhil, J.R., Dasgupta, A., , et al.: Optimal design of 5.5 GHz CMOS LNA using hybrid fitness based adaptive De with PSO. In: International Electrical Engineering Congress (IEECON), Pattaya, 2017, pp. 1–4 (2017)

  13. Joshi, D., Dash, S., Malhotra, A., et al.: Optimization of 2.4 GHz CMOS low noise amplifier using hybrid particle swarm optimization with Lévy flight. In: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), Hyderabad, 2017, pp. 181–186

  14. Bhale, V.: Design and optimization of CMOS 0.18 μm low noise amplifier for wireless applications. Int. J. Inf. Electron. Eng. 4(2), 92–97 (2014)

    Google Scholar 

  15. Ghosh, S., De, B.P., Kar, R., et al.: Optimal design of a 5.5-GHz low-power high-gain CMOS LNA using the flower pollination algorithm. J. Comput. Electron. 18(2), 737–747 (2019)

    Article  Google Scholar 

  16. Li, Y.: A simulation-based evolutionary approach to LNA circuit design optimization. Appl. Math. Comput. 209(1), 57–67 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Zandian, S., Khosravi, H., Bijari, A.: Design and heuristic optimization of a CMOS LNA for ultra-wideband receivers. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 2019, pp. 243–248

  18. Mozaffari, M.H., Abdy, H.: Zahiri, SH: IPO: an inclined planes system optimization algorithm. Comput. Inform. 35(1), 222–240 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177(22), 5033–5049 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 1995, pp. 1942–1948

  21. Lin, Y.-S., Chen, C.-Z., Yang, H.-Y., et al.: Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans. Microw. Theory Tech. 58(2), 287–296 (2010)

    Article  Google Scholar 

  22. Wu, C.-H., Lin, Y.-S., Wang, C.-C.: A 3.1–10.6-GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward body bias and forward combining techniques. Microw. Opt. Technol. Lett. 55(10), 2296–2302 (2013)

    Article  Google Scholar 

  23. Arshad, S., Ramzan, R., Muhammad, K., et al.: A sub-10 mW, noise cancelling, wideband LNA for UWB applications. AEU Int. J. Electron. Commun. 69(1), 109–118 (2015)

    Article  Google Scholar 

  24. Li, N., Feng, W., Li, X.: A CMOS 3–12 GHz ultra-wideband low noise amplifier by dual-resonance network. IEEE Microw. Wirel. Compon. Lett. 27(4), 383–385 (2017)

    Article  Google Scholar 

  25. Lin, Y.-S., Wang, C.-C., Lee, G.-L., et al.: High-performance wideband low-noise amplifier using enhanced π-match input network. IEEE Microw. Wirel. Compon. Lett. 24(3), 200–202 (2014)

    Article  Google Scholar 

  26. Saberkari, A., Kazemi, S., Shirmohammadli, V., et al.: gm-boosted flat gain UWB low noise amplifier with active inductor-based input matching network. Integration 52, 323–333 (2016)

    Article  Google Scholar 

  27. Daryabari, F., Zahedi, A., Rezaei, A., et al.: Low-power ultra-wideband LNA employing CS–CD current-reuse and gain-controller resistor technique in 0.18 μm CMOS technology. Analog Integr. Circuits Signal Process. 101(2), 187–199 (2019)

    Article  Google Scholar 

  28. Kumar, M.: Deolia, VK: A wideband design analysis of LNA utilizing complimentary common gate stage with mutually coupled common source stage. Analog Integr. Circuits Signal Process. 98(3), 575–585 (2018)

    Article  Google Scholar 

  29. Luo, P., Liu, M., Chen, L., et al.: A 2.99 dB NF 15.6 dB gain 3–10 GHz ultra-wideband low-noise amplifier for UWB systems in 65 nm CMOS. Analog Integr. Circuits Signal Process. 101(3), 651–665 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Bijari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijari, A., Zandian, S. & Ebrahimipour, M. Optimum design of a new ultra-wideband LNA using heuristic multiobjective optimization. J Comput Electron 19, 1295–1312 (2020). https://doi.org/10.1007/s10825-020-01513-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01513-6

Keywords

Navigation