Log in

DC and RF Performance Analysis of Extended Field Plated AlGaN/GaN/ β-Ga2O3 HEMT

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, High Electron Mobility Transistor is grown on various Substrates such as silicon (Si), silicon carbide (SiC), and sapphire substrate to exhibit a negative threshold voltage, whereas grown on β-gallium oxide (β-Ga2O3) to exhibit a positive threshold voltage. The optimization is done by using the pi-shaped gate and filed plate towards the drain and triple tooth metal for the proposed structure. In this, work Al0.8Ga0.2 N /AlN /GaN /AlN /Al0.4Ga0.6 N /GaN /AlN / Al0.8Ga0.2 N / β-Ga2O3 HEMT is proposed to improve the breakdown voltage, subthreshold swing. Β-Ga2O3 is prominent material to reduce the leakage current in the structure. It is observed from the obtained results that the Breakdown voltage for Si is 15 V, SiC is 20 V, Sapphire is 114 V, β-Ga2O3 is 125 V,d Unilateral power gain of 21.12dB, 19.56dB, 18.9dB, 9.5dB, at 851 GHz, 774 GHz, 738 GHz, 318 GHz when the proposed structure is grown on β-Ga2O3, SiC, Sapphire, Si substrates. In the proposed HEMT there is a compromise between frequency and breakdown voltage. If one factor improves the other reduces. But by using β-Ga2O3 as a substrate the achievement of both factors is possible. This is possible because of properly layering hetero-materials with matched lattice constant. β-Ga2O3 is a material that is a trend in the market and which resulted in intensive research. In the proposed structure Ferroelectric material i.e. lead Zirconate titanate oxide (PbZrTiO3) is used as a gate to reduce the power consumption and to increase the storage capacity in a unit area. Ferroelectric materials possess elevated dielectric constant and it has the capability of storing more charge per unit area when compared to other materials. In the small area, this material can store more data with low power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

These papers will be available on the request.

References

  1. ** Zhang, Baoshun Zhang, “Breakdown Enhancement and Current Collapse Suppression by High-Resistivity GaN Cap Layer in Normally-Off AlGaN/GaN HEMTs”, IEEE ELECTRON DEVICE LETTERS, VOL. 38, NO. 11, NOVEMBER 2017

  2. T. **n, L. Yuanjie, G. Guodong, W. Li, D. Shaobo, S. Xubo, G. Hongyu, Y. Jiayun, C. Shujun, F. Zhihong, High-performance AlGaN/GaN HEMTs with AlN/SiNx passivation. J. Semicond. 36(7), 074008 (2015). https://doi.org/10.1088/1674-4926/36/7/074008

    Article  CAS  Google Scholar 

  3. K.J. Chen, O. Häberlen, A. Lidow, C.L. Tsai, T. Ueda, Y. Uemoto, Y. Wu, “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: https://doi.org/10.1109/TED.2017.2657579

  4. H. Ishida, D. Shibata, M. Yanagihara, Y. Uemoto, H. Matsuo, T. Ueda, T. Tanaka, D. Ueda, “Unlimited high breakdown voltage by the natural super junction of polarized semiconductor,“ IEEE Electron Device Lett., vol. 29, no. 10, pp. 1087–1089, Oct. 2008, doi: 10.1109/ LED.2008.2002753

  5. J.S. Moon, H. Moyer, P. MacDonald, D. Wong, M. Antcliffe, M. Hu, P. Willadsen, P. Hashimoto, C. McGuire, M. Micovic, M. Wetzel, D. Chow, “High efficiency X-band class-E GaN MMIC high-power amplifiers,” IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications, pp. 9–12, Jan. 2012. DOI: https://doi.org/10.1109/PAWR.2012.6174909

  6. R.C. Fitch, D.E. Jr. Walker, A.J. Green, S.E. Tetlak, J.K. Gillespie, R.D. Gilbert, K.A. Sutherlin, W.D. Gouty, J.P. Theimer, G.D. Via, K.D. Chabak, G.H. Jessen, Implementation of high-power-density X-band AlGaN/GaN high electron mobility transistors in a millimeter-wave monolithic microwave integrated circuit process. IEEE Electron. Device Lett. 36, 1004–1007 (October 2015). https://doi.org/10.1109/LED.2015.2474265

  7. B. Lin, O.I. Saadat, T. Palacios, High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor. IEEE Electron. Device Lett. 31, 990–292 (August 2010). https://doi.org/10.1109/LED.2010.2055825

  8. R. Chu, Z. Chen, S.P. DenBaars, U.K. Mishra, “V-gate GaN HEMTs with engineered buffer for normally-off operation,“ IEEE Electron Device Lett., vol. 29, no. 11, pp. 1184–1186, Nov. 2008

  9. T. Ohki, T. Kikkawa, M. Kanamura, K. Imanishi, K. Makiyama, N. Okamoto, K. Joshin, N. Hara, “An over 100 W AlGaN/GaN enhancement-mode HEMT power amplifier with piezoelectric-induced cap structure,” Phys. Stat. Solidi (C), vol. 6, no. 6, pp. 1365–1368, Jun. 2009

  10. Y. Ohmaki, M. Tanimoto, S. Akamatsu, T. Mukai, “Enhancementmode AlGaN/AlN/GaN high electron mobility transistor with low ON-state resistance and high breakdown voltage,” Jpn J. Appl. Phys., vol. 45, no. 44, pp. L1 168–L1 170, 2006

  11. R. Wang, Y. Cai, C.-W. Tang, K.M. Lau, K.J. Chen, “Enhancementmode Si3N4/AlGaN/GaN MISHFETs,” IEEE Electron Device Lett., vol. 27, no. 10, pp. 793–795, Jul. 2006

  12. H.C. Chiu, C.-W. Lin, C.-H. Chen, C.-W. Yang, C.-K. Lin, J.S. Fu, L.-B. Chang, R.-M. Lin, K.-P. Hsueh, “Low hysteresis dispersion La2O3 AlGaN/GaN MOS-HEMTs,” J. Electrohem. Soc., vol. 157, no. 2, pp. H160–H164, Dec. 2010

  13. H.-C. Chiu, I.E.E.E. Member, J.-H. Wu, C.-W. Yang, F.-H. Huang, and Hsuan-Ling Kao,”Low-Frequency Noise in Enhancement-Mode GaN MOS-HEMTs by Using Stacked Al2O3/Ga2O3/Gd2O3 Gate Dielectric”, IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 7, JULY 2012

  14. M.N.A. Aadit, S.G. Kirtania, F. Afrin, Md. Kawsar Alam and Quazi Deen Mohd Khosru, “High Electron Mobility Transistors: Performance Analysis, Research Trend and Applications”, DOI: 10.5772/67796, june 2017

  15. R. Mitova, R. Ghosh, U. Mhaskar, D. Klikic, M.X. Wang, A. Dentella, Investigations of 600-V GaN HEMT and GaN diode for power converter applications. IEEE Trans. Power Electron. 29(5), 2441–2452 (2014)

    Article  Google Scholar 

  16. Rohit Yadav, Aloke K. Dutta, A New Charge-Based Analytical Model for the Gate Current in GaN HEMTs, IEEE Trans. Electron Devices (Volume: 69 Issue: 4, April 2022), https://doi.org/10.1109/TED.2022.3149460

  17. T.-L. Wu et al., Analysis of the gate capacitance–voltage characteristics in p-GaN/AlGaN/GaN heterostructures. IEEE Electron. Device Lett. 38(12), 1696–1699 (Dec. 2017). https://doi.org/10.1109/LED.2017.2768099

  18. Akshat Chitransh, Shreya Moonka, Anushruti Priya, Santashraya Prasad, Anumita Sengupta, Aminul Islam, “ analysis of breakdown voltage of a field plated high Electron mobility Transistor” oct 2017, https://doi.org/10.1109/DEVIC.2017.8073929

  19. Y. Kusano, Q. Wang, R.Q. Rudy, R.G. Polcawich, D.A. Horsley, “Wideband air-coupled PZT piezoelectric micromachined ultrasonic transducer through DC bias tuning,” in Proc. 30th IEEE Int. Conf. Micro Electro Mech. Syst. (MEMS), Jan. 2017, pp. 1204–1207

  20. R.J. Przybyla, H.Y. Tang, A. Guedes, S.E. Shelton, D.A. Horsley, B.E. Boser, 3D ultrasonic rangefinder on a chip. IEEE J. Solid-State Circuits. 50(1), 320–334 (Jan. 2015)

  21. Y. Lu et al., “Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics,” Appl. Phys. Lett., vol. 106, no. 26, p. 263503, Jun. 2015

  22. P. Muralt, “PZT thin films for microsensors and actuators: Where do we stand?” IEEE Trans. Ultrason., Ferroelect., Freq. Control, vol. 47, no. 4, pp. 903–915, Jul. 2000

  23. K.J. Chen, O. Haberlen, A. Lidow, C.L. Tsai, T. Ueda, Y. Uemoto, Y. Wu, “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: https://doi.org/10.1109/TED.2017.2657579

  24. N. Chowdhury, J. Lemettinen, Q. **e, Y. Zhang, N.S. Rajput, P. **ang, K. Cheng, S. Suihkonen, H.W. Then, T. Palacios, “P-channel GaN transistor based on P-GaN/AlGaN/GaN on Si,” IEEE Electron Device Lett., vol. 40, no. 7, pp. 1036–1039, Jul. 2019, doi: https://doi.org/10.1109/LED.2019.2916253

  25. S.J. Bader, R. Chaudhuri, K. Nomoto, A. Hickman, Z. Chen, H.W. Then, D.A. Muller, H.G. **ng, D. Jena, “Gate-recessed E-mode P-channel HFET with high on-current based on GaN/AlN 2D hole gas,” IEEE Electron Device Lett., vol. 39, no. 12, pp. 1848–1851, Dec. 2018, doi: https://doi.org/10.1109/LED.2018.2874190

  26. A. Podolska, M. Kocan, A.M. Garces Cabezas, T.D. Wilson, G.A. Umana-Membreno, Ion versus pH sensitivity of ungated AlGaN/GaN heterostructure-based devices. Appl. Phys. Lett. 97, 012108 (2010)

    Article  Google Scholar 

  27. M. Asadnia et al., Mercury(II) selective sensors based on AlGaN/GaN transistors. Anal. Chim Acta. 943, 1–7 (Nov. 2016)

Download references

Acknowledgements

The authors wish to thank the Department of Science & Technology, Government of India, for funding the Research Infrastructure under the Scheme entitled “Funds for the Improvement of S&T Infrastructure (DST-FIST)” Ref. No. SR/FST/College − 110/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Balaji.

Ethics declarations

Ethics Approval

All The authors declared that have no known competing financial interest.

Consent to Participate

The authors voluntarily agreed to participate in this work.

Consent for Publication

All the authors give the permission to Journal to publish this paper.

Conflict of Interest

Declared that no conflict of Interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpagam, R., Vimalraj, S.L.S., Sathishkumar, G.K. et al. DC and RF Performance Analysis of Extended Field Plated AlGaN/GaN/ β-Ga2O3 HEMT. Trans. Electr. Electron. Mater. 24, 459–468 (2023). https://doi.org/10.1007/s42341-023-00464-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-023-00464-6

Keywords

Navigation