Log in

A Study of an Ultrasensitive Label Free Silicon Nanowire FET Biosensor for Cardiac Troponin I Detection

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study evolves an ultrasensitive label free electrical device, the silicon nanowire field effect transistor (SiNW FET) for cardiac troponin I (cTnI) in acute myocardial infarction (AMI). In this work, SiNW FET is designed, simulated using COMSOL semiconductor module to identify the presence of different concentrations of cTnI present in human blood. The surface of the SiNW is functionalized with the cTnI monoclonal antibody (mAb-cTnI) on attached to detect cTnI antigen. The response of the device is also studied using cTnI at different concentrations with the lowest limit of detection of 0.002 ng/mL. The presented SiNW FET in this study shows considerable response than the earlier developed devices and signify impressive capability for subsequent implementation in point-of-care (PoC) detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No supplementary materials.

References

  1. Jahwarhar Izuan A, Rashid J, Abdullah NA, Yusof, Hajian R (2013) The development of SiNW as sensing material and its applications. J Nanomater. https://doi.org/10.1155/2013/328093

    Article  Google Scholar 

  2. Qin Y, Liu D, Zhang T, Zhen Cui (2017) Ultrasensitive SiNW sensor developed by a special AgModification process for rapid NH3 detection. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b10584

    Article  PubMed  Google Scholar 

  3. Xuge F, Sang S, Hu J, Li P, Li G,Wendong Zhang (2012) Recent development of SiNW FET biosensor for DNA detection. International Conference on Computing, Measurement, Control and Sensor Network. https://doi.org/10.1109/CMCSN.2012.52

  4. Cui Y, Wei Q, Park H, Leiber, (2001) Nanowire nano sensors for highly sensitive and selective detection of biological and chemical species. Science CM. https://doi.org/10.1126/science.1062711

  5. Curreli M, Zhang R, Ishikawa FN, Chang H-K, Cote RJ, Zhou C, Thompson ME (2008) Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans Nanotechnol. https://doi.org/10.1109/TNANO.2008.2006165

    Article  Google Scholar 

  6. Sreenivasulu VB, Narendar V (2021) A comprehensive analysis of junctionless Tri-gate (TG) FinFET towards low-power and high-frequency applications at 5-nm gate length. Silicon.  https://doi.org/10.1007/s12633-021-00987-8

  7. Sreenivasulu VB, Narendar V (2021) Design and temperature assessment of junctionless nanosheet FET for nanoscale applications. Silicon.  https://doi.org/10.1007/s12633-021-01145-w

  8. Nozaki D, Kunstmann J, Zörgiebel F, Weber W, Mikolajick T, Cuniberti G (2011) Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology. https://doi.org/10.1088/0957-4484/22/32/325703

  9. Kim A, Ah CS, Yu HY, Yang J-H, Baek I-B, Ahn C-G, Park CW,  Jun MS, Lee S (2007) Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl Phys Lett. https://doi.org/10.1063/1.2779965

  10. Al-Hardan NH, Hamid M, Azmi A, Ahmed NM, Azman J, Shamsudin R, Othman NK, Keng LK, Chiu W, Al-Rawi HN (2016) High sensitivity pH sensor based on porous silicon (PSi) extended gate field-effect transistor. Sensors. https://doi.org/10.3390/s16060839

  11. Svendsen WE, Jorgensen M, Andresen L, Brandt Andersen K, Larsen MBB, Skov S, Dimaki M (2011) Silicon nanowire as virus sensor in a total analysis system. Procedia Eng. https://doi.org/10.1016/j.proeng.2011.12.071

    Article  Google Scholar 

  12. Nair PR, Alam MA (2006) Performance limits of nanobiosensors. Appl Phys Lett. https://doi.org/10.1063/1.2211310

    Article  Google Scholar 

  13. Gao A et al (2011) Silicon-nanowire-based CMOS-compatible feld-efect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11:3974–3978

    Article  CAS  Google Scholar 

  14. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  Google Scholar 

  15. Matta DP, Vanjari SRamaK, Sharma CS, Govind Singh S (2016) Ultrasensitive, label free, chemiresistive nanobiosensor using multiwalled carbon nanotubes embedded electrospun SU-8 nanofibers. Sensors. https://doi.org/10.3390/s16091354

  16. Prakash MD, Tripathy S, Vanjari S, Rama K, Sharma CS, Govind Singh S (2016) An ultrasensitive label free nanobiosensor platform for the detection of cardiac biomarkers. Biomed Microdevices. https://doi.org/10.1007/s10544-016-0126-3

    Article  PubMed  Google Scholar 

  17. Lin T-W, Hsieh P-J, Lin C-L, Fang Y-Y, Yang J-X, Tsai C-C, Chiang P-L, Pan C-Y, Chen Y-T (2010) Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0910243107

  18. Kong T, Su R, Zhang B, Zhang Q, Cheng G (2012) CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiactroponin I for acute myocardial infarction diagnosis. Biosens Bioelectron 34:267–272

  19. Reddy K, Khaliq A, Henning RJ (2015) Recent advances in the diagnosis and treatment of acute myocardial infarction. World J Cardiol 7:243–276

    Article  Google Scholar 

  20. Huang CW et al (2013) A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology. Lab Chip 13:4451–4459

    Article  CAS  Google Scholar 

  21. Shen M-Y, Li B-R, Li Y-K (2014) Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive. Biosensors Bioelectronics. https://doi.org/10.1016/j.bios.2014.03.057

    Article  PubMed  Google Scholar 

  22. Fan Yang G-J, Zhang (2014) Silicon nanowire-transistor biosensor for study of molecule-molecule interactions. Rev Anal Chem 33(2):95–110. https://doi.org/10.1515/revac-2014-0010

    Article  CAS  Google Scholar 

  23. Fernando Patolsky BP, Timko G, Zheng, Lieber CM (2007) Nanowire-based nanoelectronic devices in the life sciences. MRS Bull 32(2):142–149. https://doi.org/10.1557/mrs2007.47

  24. Singh P, Sohi PA, Kahrizi M (2021) Finite element modelling of bandgap engineered graphene FET with the application in sensing methanethiol biomarker. Sensors. https://doi.org/10.3390/s21020580

  25. Kim K, Park C, Kwon D, Kim D, Meyyappan M, Jeon S, Lee J-S (2016) Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2015.10.008

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo H, He N, Ge S, Yang D, Zhang J (2005) MCM-41 mesoporous material modified carbon paste electrode for the determination of cardiac troponin I by anodic strip** voltammetry. Talanta. https://doi.org/10.1016/j.talanta.2005.04.067

    Article  PubMed  Google Scholar 

  27. Zhang B, Morales AW, Peterson R, Tang L, Ye JY (2014) Label-free detection of cardiac troponin I with a photonic crystal biosensor. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2014.02.057

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim WJ, Kim BK, Kim A, Huh CS, Ah C, Kim KH, ... & Sung GY (2010) Response to cardiac markers in human serum analyzed by guided-moderesonance biosensor. Anal Chem. https://doi.org/10.1021/ac101716p

  29. Periyakaruppan A, Gandhiraman RP, Meyyappan M, Koehne JE (2013) Label-free detection of cardiac troponin-I using carbon nanofiber based nanoelectrode arrays. Anal Chem. https://doi.org/10.1021/ac302801z

    Article  PubMed  Google Scholar 

  30. Kong T, Su R, Zhang B, Zhang Q, Cheng G (2012) CMOS-compatible, label-free silicon-nanowire biosensors to detect cardiac troponin I for acute myocardial infarction diagnosis. Biosens Bioelectron. https://doi.org/10.1021/ac302801z

    Article  PubMed  Google Scholar 

  31. Chang S-M, Palanisamy S, Wu T-H, Chen C-Y, Cheng K-H, Lee C-Y, Shyng-Shiou F, Yuan, Wang Y-M (2020) Utilization of silicon nanowire field-effect transistors for the detection of a cardiac biomarker, cardiac troponin I and their applications involving animal models. Sci Rep. https://doi.org/10.1038/s41598-020-78829-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Aknowledgements

The authors would like to acknowledge Indian Institute of Technology Hyderabad (IIT Hyderabad) for backing us with some experimental work carried out and the tool (COMSOL Semiconductor Module) required for simulating this work. And M. Durga Prakash thankfully acknowledges this publication as an outcome of the R&D work undertaken project under the Start-up Research Grant (File No.: SRG/2019/002236) Scheme of Department of Science and Technology (DST), Government of India, being Science Engineering Research Broad (SERB).

Author information

Authors and Affiliations

Authors

Contributions

M. Durga Prakash and Shaik Ahmadsaidulu: Conceptualization; M. Durga Prakash and Shaik Ahmadsaidulu: investigation; M. Durga Prakash, Shaik Ahmadsaidulu, B. Vamsi Krsihna, N. Arun Vignesh, Asisa Kumar Panigrahy, and B V V Satyanarayana: resources; M. Durga Prakash, Shaik Ahmadsaidulu, B. Vamsi Krsihna, N. Arun Vignesh and B V V Satyanarayana: data curation; M. Durga Prakash, N. Arun Vignesh, Asisa Kumar Panigrahy and Shaik Ahmadsaidulu: writing—original draft preparation; M. Durga Prakash, N. Arun Vignesh, and Shaik Ahmadsaidulu: writing—review and editing; M. Durga Prakash and Shaik Ahmadsaidulu: visualization; M. Durga Prakash: supervision;

Corresponding authors

Correspondence to M. Durga Prakash or Shaik Ahmadsaidulu.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Additional informed consent was obtained from Shaik Ahmadsaidulu identifying information is included in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, M.D., Krsihna, B.V., Satyanarayana, B.V.V. et al. A Study of an Ultrasensitive Label Free Silicon Nanowire FET Biosensor for Cardiac Troponin I Detection. Silicon 14, 5683–5690 (2022). https://doi.org/10.1007/s12633-021-01352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01352-5

Keywords

Navigation