Log in

Gate dielectric based steady state & transient analysis of channel characteristics for organic thin-film transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gate dielectric materials play a crucial role in the design of organic thin-film transistors. The effects of the low-k and high-k gate dielectric materials, both organic and inorganic, on the bottom gate Pentacene/a-IGZO thin-film transistors (TFT) are studied and simulated using 2D numerical device simulation. The effect on the electrical characteristics of different gate dielectrics namely Air, SiO2 (Silicon Oxide), Si3N4 (Silicon Nitride), Al2O3 (Aluminum Oxide), Sapphire, Y2O3 (Yttrium Trioxide), HfO2 (Hafnium Oxide), Ta2O5 (Tantalum Oxide), La2O3 (Lanthanum Oxide), Nb2O5 (Niobium Oxide) and TiO2 (Titanium Oxide) have been studied and compared using current–voltage (I–V) transfer characteristics in the linear and saturation regime for both n-type and p-type transistors. In addition, the analysis was also carried out for organic gate dielectrics such as PMMA (poly methyl methacrylate), silk fibroin, PVA (polyvinyl alcohol) and CEP (Cyanoethyl pullulan). From the extracted results, it is found that the device shows better performance for TiO2 which shows a high ON current of − 1.36 µA and 13.4 µA for p-and n-type transistors respectively. Furthermore, the low threshold voltage (VTH), high ON/OFF ratio, high gate oxide capacitance (C′OX), and low subthreshold slope (SS) ensure a low operating voltage, thus enabling the realization of low power devices and low gate leakage (IGS), which also suppresses the excess heat generated in the device. Finally, the tuning of the high-k gate dielectric thickness can be extended further for future work and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Kim, A. Georgiadis, M.M. Tentzeris, Design of inkjet-printed RFID-based sensor on paper: single-and dual-tag sensor topologies. Sensors (Switzerland) 18(6), 1–11 (2018). https://doi.org/10.3390/s18061958

    Article  CAS  Google Scholar 

  2. K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Electron. Flex. (2022). https://doi.org/10.1038/s41528-022-00133-3

    Article  Google Scholar 

  3. X. Guo, Y. Xu, S. Ogier, T.N. Ng, M. Caironi, A. Perinot, L. Li, J. Zhao, W. Tang, R.A. Sporea, A. Nejim, J. Carrabina, P. Cain, F. Yan, Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Devices 64(5), 1906–1921 (2017). https://doi.org/10.1109/TED.2017.2677086

    Article  CAS  Google Scholar 

  4. D. Käfer, L. Ruppel, G. Witte, Growth of pentacene on clean and modified gold surfaces. Phys. Rev. B 75(8), 1–14 (2007). https://doi.org/10.1103/PhysRevB.75.085309

    Article  CAS  Google Scholar 

  5. T. F. Studies, C. Chen, K. Abe, H. Kumomi, J. Kanicki, S. Member, and A. Temperature-dependent, “Density of States of a-InGaZnO From,” vol. 56, no. 6, pp. 1177–1183, 2009.

  6. B.S. Bhardwaj, T. Sugiyama, N. Namba, T. Umakoshi, T. Uemura, T. Sekitani, P. Verma, Orientation analysis of pentacene molecules in organic field-effect transistor devices using polarization-dependent Raman spectroscopy. Sci. Rep. 9(1), 1–9 (2019). https://doi.org/10.1038/s41598-019-51647-2

    Article  CAS  Google Scholar 

  7. T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. (2010). https://doi.org/10.1088/1468-6996/11/4/044305

    Article  Google Scholar 

  8. J.M. Chung, X. Zhang, F. Shang, J.H. Kim, X.L. Wang, S. Liu, B. Yang, Y. **ang, Enhancement of a-IGZO TFT device performance using a clean interface process via etch-stopper nano-layers. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2571-9

    Article  Google Scholar 

  9. L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. (2016). https://doi.org/10.1063/14953034

    Article  Google Scholar 

  10. W. Shi, Y. Zheng, J. Yu, Polymer dielectric in organic field-effect transistor. Prop. Appl. Polym. Dielectr (2017). https://doi.org/10.5772/65916

    Article  Google Scholar 

  11. S. Kim, H. Yoo, Self-assembled monolayers: versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers. Micromachines (2021). https://doi.org/10.3390/mi12050565

    Article  Google Scholar 

  12. B. Ravi, T. Karri, N. Gupta, Hybrid bilayer gate dielectric-based organic thin film transistors. Bull. Mater. Sci. (2019). https://doi.org/10.1007/s12034-018-1689-9

    Article  Google Scholar 

  13. J. Tardy, M. Erouel, A.L. Deman, A. Gagnaire, V. Teodorescu, M.G. Blanchin, B. Canut, A. Barau, M. Zaharescu, Organic thin film transistors with HfO2 high-k gate dielectric grown by anodic oxidation or deposited by sol–gel. Microelectron. Reliab. 47(2–3), 372–377 (2007). https://doi.org/10.1016/j.microrel.2006.01.012

    Article  CAS  Google Scholar 

  14. R. Sarma, D. Saikia, P. Saikia, P.K. Saikia, B. Baishya, Pentacene based thin film transistors with high-k dielectric Nd2O3 as a gate insulator. Brazilian J. Phys. 40(3), 357–360 (2010). https://doi.org/10.1590/S0103-97332010000300019

    Article  CAS  Google Scholar 

  15. Y.H. Lin, J.C. Chou, Temperature effects on a-IGZO thin film transistors using HfO2 gate dielectric material. J. Nanomater. (2014). https://doi.org/10.1155/2014/347858

    Article  Google Scholar 

  16. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012). https://doi.org/10.1002/adma.201103228

    Article  CAS  Google Scholar 

  17. P.F. Carcia, R.S. McLean, M.H. Reilly, M.K. Crawford, E.N. Blanchard, A.Z. Kattamis, S. Wagner, A comparison of zinc oxide thin-film transistors on silicon oxide and silicon nitride gate dielectrics. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2786869

    Article  Google Scholar 

  18. K.C. Chinnam, S. Gupta, H. Gleskova, Aluminium oxide prepared by UV/ozone exposure for low-voltage organic thin-film transistors. J. Non Cryst. Solids 358(17), 2512–2515 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.01.016

    Article  CAS  Google Scholar 

  19. L.C. Cheng, M.R. Wu, C.Y. Huang, T.K. Juang, P.L. Liu, R.H. Horng, Effect of defects on the properties of ZnGa2O4 thin-film transistors. ACS Appl. Electron. Mater. 1(2), 253–259 (2019). https://doi.org/10.1021/acsaelm.8b00093

    Article  CAS  Google Scholar 

  20. J. Tardy, M. Erouel, A. L. Deman, A. Gagnairel, N. Jaffrezic, V. Teodorescu, G. Blanchin, B. Canut, A. Barau, M. Zaharescu, E. C. De Lyon, L. Gegely, and U. L. I, Gagnairel, Zaharescu5. pp. 4–7, 2005.

  21. W. Boukhili, B. Canımkurbey, M. Yasin, A. Al-Ghamdi, S. Wageh, Hysteresis control by varying Ta2O5-nanoparticles concentration in PMMA-Ta2O5 bilayer gate dielectric of hybrid-organic thin film transistors. Org. Electron. 75(July), 2–6 (2019). https://doi.org/10.1016/j.orgel.2019.105390

    Article  CAS  Google Scholar 

  22. S. Khound, R. Sarma, High performance organic thin film transistors using pentacene-based rare-earth oxide bilayer gate dielectric. J. Electron. Mater. 48(7), 4491–4497 (2019). https://doi.org/10.1007/s11664-019-07232-4

    Article  CAS  Google Scholar 

  23. B.J. Park, J.H. Park, J.S. Choi, H.J. Choi, Layer-by-layer structured polymer/TiO2 thin film and its gate dielectric application. J. Nanosci. Nanotechnol. 10(7), 4758–4761 (2010). https://doi.org/10.1166/jnn.2010.1677

    Article  CAS  Google Scholar 

  24. A. Laudari, J. Barron, A. Pickett, S. Guha, Tuning charge transport in PVDF-based organic ferroelectric transistors: status and outlook. ACS Appl. Mater. Interfaces 12(24), 26757–26775 (2020). https://doi.org/10.1021/acsami.0c05731

    Article  CAS  Google Scholar 

  25. R.P. Ortiz, A. Facchetti, T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110(1), 205–239 (2010). https://doi.org/10.1021/cr9001275

    Article  CAS  Google Scholar 

  26. S. Maitra, (2017) Study of the variation of the threshold voltage with the do** concentration and channel length. Proc. 2nd Int. Conf. 2017 Devices Integr. https://doi.org/10.1109/DEVIC.2017.8073976.

  27. R. Agarwal, Threshold voltage extraction for organic thin film transistor in linear region using asymmetric metal insulator semiconductor capacitive test structure. Semicond. Sci. Technol. (2019). https://doi.org/10.1088/1361-6641/ab3817

    Article  Google Scholar 

  28. T.J. Ha, P. Sonar, A. Dodabalapur, High mobility top-gate and dual-gate polymer thin-film transistors based on diketopyrrolopyrrole-naphthalene copolymer. Appl. Phys. Lett. 98(25), 1–4 (2011). https://doi.org/10.1063/1.3601928

    Article  CAS  Google Scholar 

  29. C.R. Newman, C.D. Frisbie, D.A. Da Silva Filho, J.L. Brédas, P.C. Ewbank, K.R. Mann, Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16(23), 4436–4451 (2004). https://doi.org/10.1021/cm049391x

    Article  CAS  Google Scholar 

  30. C.H. Kim, Y. Bonnassieux, G. Horowitz, Compact DC modeling of organic field-effect transistors: review and perspectives. IEEE Trans. Electron Devices 61(2), 278–287 (2014). https://doi.org/10.1109/TED.2013.2281054

    Article  CAS  Google Scholar 

  31. T.E. Taouririt, A. Meftah, N. Sengouga, M. Adaika, S. Chala, A. Meftah, Effects of high-: K gate dielectrics on the electrical performance and reliability of an amorphous indium-Tin-zinc-oxide thin film transistor (a-ITZO TFT): an analytical survey. Nanoscale 11(48), 23459–23474 (2019). https://doi.org/10.1039/c9nr03395e

    Article  CAS  Google Scholar 

  32. R. Agarwal, Electrical & physical characterization of silicon-organic asymmetrical metal insulator semiconductor capacitive test structure. SILICON 14(3), 1315–1327 (2022). https://doi.org/10.1007/s12633-020-00939-8

    Article  CAS  Google Scholar 

  33. D. S. Software, ATLAS User ’ s Manual. vol. II, pp. 567–1000, 1998.

  34. K. Yim, Y. Yong, J. Lee, K. Lee, H.H. Nahm, J. Yoo, C. Lee, C.S. Hwang, S. Han, Novel high-Κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7(6), 1–6 (2015). https://doi.org/10.1038/am.2015.57

    Article  CAS  Google Scholar 

  35. D.A. Buchanan, S.H. Lo, Reliability and integration of ultra-thin gate dielectrics for advanced CMOS. Microelectron. Eng. 36(1–4), 13–20 (1997). https://doi.org/10.1016/S0167-9317(97)00007-5

    Article  CAS  Google Scholar 

  36. C. Zhao, X. Wang, W. Wang, High-κ dielectric and metal gate. Elsevier Ltd. (2018). https://doi.org/10.1016/B978-0-08-102139-2.00004-5

    Article  Google Scholar 

  37. J. Lee, J.H. Kim, S. Im, Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass. Appl. Phys. Lett. 83(13), 2689–2691 (2003). https://doi.org/10.1063/1.1613997

    Article  CAS  Google Scholar 

  38. S. Vallisree, R. Thangavel, T.R. Lenka, Comparative characteristics study of the effect of various gate dielectrics on ZnO TFT. Int. Conf. Energy, Commun. Data Anal. Soft Comput (2018). https://doi.org/10.1109/ICECDS.2017.8390197

    Article  Google Scholar 

  39. P.K. Nayak, M.N. Hedhili, D. Cha, H.N. Alshareef, High performance solution-deposited amorphous indium gallium zinc oxide thin film transistors by oxygen plasma treatment. Appl. Phys. Lett. 100(20), 1–5 (2012). https://doi.org/10.1063/1.4718022

    Article  CAS  Google Scholar 

  40. L.F. Deng, W.M. Tang, C.H. Leung, P.T. Lai, J.P. Xu, C.M. Che, Pentacene thin-film transistors with HfO2 gate dielectric annealed in NH3 or N2O. Int. Conf. Electron Devices Solid-State Circuits (2008). https://doi.org/10.1109/EDSSC.2008.4760740

    Article  Google Scholar 

  41. X. Zou, G. Fang, L. Yuan, X. Tong, X. Zhao, A comparative study of amorphous InGaZnO thin-film transistors with HfOxNy and HfO2 gate dielectrics. Semicond. Sci. Technol. (2010). https://doi.org/10.1088/0268-1242/25/5/055006

    Article  Google Scholar 

  42. C. Shen, Z. Yin, F. Collins, N. Pinna, Atomic layer deposition of metal oxides and chalcogenides for high performance transistors. Adv. Sci. 9(23), 1–37 (2022). https://doi.org/10.1002/advs.202104599

    Article  CAS  Google Scholar 

  43. J.F. Scott, High-dielectric constant thin films for dynamic random access memories (DRAM). Annu. Rev. Mater. Sci. 28(1), 79–100 (1998). https://doi.org/10.1146/annurev.matsci.28.1.79

    Article  CAS  Google Scholar 

  44. D.C. Bharti, S.W. Rhee, Dielectric properties and X-ray photoelectron spectroscopic studies of niobium oxide thin films prepared by direct liquid injection chemical vapor deposition method. Thin Solid Films 548, 195–201 (2013). https://doi.org/10.1016/j.tsf.2013.09.063

    Article  CAS  Google Scholar 

  45. G.P. Mohanty, L.J. Fiegel, A crystallographic study of Nb2 O5.3WO3. Acta Crystallogr. 17(4), 454–454 (1964). https://doi.org/10.1107/s0365110x64001037

    Article  CAS  Google Scholar 

  46. I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv. 8(53), 30125–30147 (2018). https://doi.org/10.1039/c8ra06517a

    Article  CAS  Google Scholar 

  47. W.S. Shih, S.J. Young, L.W. Ji, W. Water, H.W. Shiu, TiO2-based thin film transistors with amorphous and anatase channel layer. J. Electrochem. Soc. 158(6), H609 (2011). https://doi.org/10.1149/1.3561271

    Article  CAS  Google Scholar 

  48. J.W. Lim, J.B. Koo, S.J. Yun, H.T. Kim, Characteristics of pentacene thin film transistor with Al2O3 gate dielectrics on plastic substrate. Electrochem. Solid-State Lett. 10(10), 136–138 (2007). https://doi.org/10.1149/1.2760321

    Article  CAS  Google Scholar 

  49. Y. Khan, A. Thielens, S. Muin, J. Ting, C. Baumbauer, A.C. Arias, A new frontier of printed electronics: flexible hybrid electronics. Adv. Mater. 32(15), 1–29 (2020). https://doi.org/10.1002/adma.201905279

    Article  CAS  Google Scholar 

  50. G. Tarabella, F. Mahvash Mohammadi, N. Coppedè, F. Barbero, S. Iannotta, C. Santato, F. Cicoira, New opportunities for organic electronics and bioelectronics Ions in action. Chem. Sci. 4(4), 1395–1409 (2013). https://doi.org/10.1039/c2sc21740f

    Article  CAS  Google Scholar 

  51. B. Kumar, B.K. Kaushik, Y.S. Negi, Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym. Rev. 54(1), 33–111 (2014). https://doi.org/10.1080/15583724.2013.848455

    Article  CAS  Google Scholar 

  52. F. Liao, C. Chen, V. Subramanian, Organic TFTs as gas sensors for electronic nose applications. Sensors Actuators, B Chem. 107(2), 849–855 (2005). https://doi.org/10.1016/j.snb.2004.12.026

    Article  CAS  Google Scholar 

  53. T. Yardım, A. Demir, S. Allı, A. Allı, İ Yücedağ, Investigation of the performance of Poly(Methyl-Acrylate) as a gate dielectric in organic thin-film transistors. J. Electron. Mater. 49(6), 3830–3836 (2020). https://doi.org/10.1007/s11664-020-08090-1

    Article  CAS  Google Scholar 

  54. T.S. Huang, Y.K. Su, P.C. Wang, Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer. Appl. Phys. Lett. 91(9), 51–54 (2007). https://doi.org/10.1063/1.2775333

    Article  CAS  Google Scholar 

  55. M.A. Seo, J.W. Lee, D.S. Kim, Dielectric constant engineering with polymethylmethacrylate-graphite metastate composites in the terahertz region. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2178389

    Article  Google Scholar 

  56. G.M. Wu, Y.H. Lu, J.W. Teng, J.C. Wang, T.E. Nee, Preparation and characterization of pentacene-based organic thin-film transistors with PVA passivation layers. Thin Solid Films 517(17), 5318–5321 (2009). https://doi.org/10.1016/j.tsf.2009.03.187

    Article  CAS  Google Scholar 

  57. W. Xu, C. Guo, S.W. Rhee, High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures. J. Mater. Chem. C 1(25), 3955–3960 (2013). https://doi.org/10.1039/c3tc30134f

    Article  CAS  Google Scholar 

  58. J. Leise, J. Pruefer, A. Nikolaou, G. Darbandy, H. Klauk, B. Iniguez, A. Kloes, Macromodel for AC and Transient simulations of organic thin-film transistor circuits including nonquasistatic effects. IEEE Trans. Electron Devices 67(11), 4672–4676 (2020). https://doi.org/10.1109/TED.2020.3018094

    Article  CAS  Google Scholar 

  59. S. Hlali, N. Hizem, L. Militaru, A. Kalboussi, A. Souifi, Effect of interface traps for ultra-thin high-k gate dielectric based MIS devices on the capacitance-voltage characteristics. Microelectron. Reliab. 75, 154–161 (2017). https://doi.org/10.1016/j.microrel.2017.06.056

    Article  CAS  Google Scholar 

  60. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. J. Mater. Sci. Mater. Electron. 27(12), 13154–13160 (2016). https://doi.org/10.1007/s10854-016-5461-x

    Article  CAS  Google Scholar 

  61. K. Suri, S. Annapoorni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors Actuators, B Chem. 81(2–3), 277–282 (2002). https://doi.org/10.1016/S0925-4005(01)00966-2

    Article  CAS  Google Scholar 

  62. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors (Switzerland) 13(3), 3615–3624 (2013). https://doi.org/10.3390/s130303615

    Article  CAS  Google Scholar 

  63. Y. Wang, X. Huang, T. Li, L. Li, X. Guo, P. Jiang, Polymer-based gate dielectrics for organic field-effect transistors. Chem. Mater. 31(7), 2212–2240 (2019). https://doi.org/10.1021/acs.chemmater.8b03904

    Article  CAS  Google Scholar 

  64. T.C. Fung, C.S. Chuang, C. Chen, K. Abe, R. Cottle, M. Townsend, H. Kumomi, J. Kanicki, Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. J. Appl. Phys. (2009). https://doi.org/10.1063/1.3234400

    Article  Google Scholar 

  65. E.K.H. Yu, S. Jun, D.H. Kim, J. Kanicki, Density of states of amorphous In–Ga–Zn–O from electrical and optical characterization. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4898567

    Article  Google Scholar 

  66. T. Cui, G. Liang, Dual-gate pentacene organic field-effect transistors based on a nanoassembled SiO2 nanoparticle thin film as the gate dielectric layer. Appl. Phys. Lett. 86(6), 1–3 (2005). https://doi.org/10.1063/1.1861126

    Article  CAS  Google Scholar 

  67. G.H. Gelinck, E. Van Veenendaal, R. Coehoorn, Dual-gate organic thin-film transistors. Appl. Phys. Lett. 87(7), 3–6 (2005). https://doi.org/10.1063/1.2031933

    Article  CAS  Google Scholar 

  68. Y.J. Lin, C.C. Hung, J.S. Huang, S.Y. Lin, H.C. Chang, Electrical and surface properties of SiO2 films modified by ultraviolet irradiation and used as gate dielectrics for pentacene thin-film transistor applications. Chinese J. Phys. 61(September), 248–254 (2019). https://doi.org/10.1016/j.cjph.2019.08.013

    Article  CAS  Google Scholar 

  69. P. Mittal, S. Yadav, S. Negi, Advancements for organic thin film transistors: structures, materials, performance parameters, influencing factors, models, fabrication, reliability and applications. Mater. Sci. Semicond. Process. 133, 105975 (2021). https://doi.org/10.1016/j.mssp.2021.105975

    Article  CAS  Google Scholar 

  70. A. Singh, M.K. Singh, TCAD based study of parameters affecting the electrical performance of organic thin-film transistors. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1706/1/012074

    Article  Google Scholar 

  71. M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, T. Kurita, Flexible AM OLED panel driven by bottom-contact OTFTs. IEEE Electron Device Lett. 27(4), 249–251 (2006). https://doi.org/10.1109/LED.2006.870413

    Article  CAS  Google Scholar 

  72. M.W. Alam, Z. Wang, S. Naka, H. Okada, Top contact pentacene based organic thin film transistor with Bi-layer TiO2/Au electrodes. J. Photopolym. Sci. Technol. 25(5), 659–664 (2012). https://doi.org/10.2494/photopolymer.25.659

    Article  CAS  Google Scholar 

  73. Y. Zhang, Y. Lin, G. He, B. Ge, W. Liu, Balanced performance improvement of a-InGaZnO thin-film transistors using AlD-derived Al2O3-passivated high-K HfGDox dielectrics. ACS Appl. Electron. Mater. 2(11), 3728–3740 (2020). https://doi.org/10.1021/acsaelm.0c00763

    Article  CAS  Google Scholar 

  74. H. Jung, W.H. Kim, B.E. Park, W.J. Woo, I.K. Oh, S.J. Lee, Y.C. Kim, J.M. Myoung, S. Gatineau, C. Dussarrat, H. Kim, Enhanced light stability of InGaZnO thin-film transistors by atomic-layer-deposited Y2O3 with Ozone. ACS Appl. Mater. Interfaces 10(2), 2143–2150 (2018). https://doi.org/10.1021/acsami.7b14260

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by RA. The first draft of the manuscript was written by RN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rajesh Agarwal.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nirosha, R., Agarwal, R. Gate dielectric based steady state & transient analysis of channel characteristics for organic thin-film transistors. J Mater Sci: Mater Electron 34, 2120 (2023). https://doi.org/10.1007/s10854-023-11580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11580-7

Navigation