Log in

High Performance Organic Thin Film Transistors Using Pentacene-Based Rare-Earth Oxide Bilayer Gate Dielectric

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

High-k dielectrics, neodymium oxide (Nd2O3) and lanthanum oxide (La2O3) are regarded as useful materials to reduce the operating voltage of organic thin film transistors (OTFTs). However, the high-k dielectrics often have the drawback of high interface trap density leading to high leakage current and low carrier mobility. Here, a bilayer La2O3/Nd2O3 gate dielectric for OTFTs is employed to address the issues. A top contact pentacene-based organic thin film transistor is exhibiting a variation in carrier mobility as the thickness of Nd2O3 changes from 100 nm to 175 nm. Compared to the pentacene thin film transistor with solely 118 nm thick La2O3 gate dielectric, the OTFTs with the bilayer La2O3/Nd2O3 (118 nm/150 nm) gate dielectric improves the threshold voltage from − 0.42 V to − 1.1 and V, the carrier mobility from 0.54 cm2/Vs to 1.08 cm2/Vs. These bilayer devices produced the current on–off ratio of 2.4 × 105 and the subthreshold slope of 0.5 V/decade. The OTFT device exhibits good stability under a low voltage bias-stress effect. The OTFTs are investigated in the atomic force microscope to understand the dielectric–pentacene interface to verify the improved OTFT parameters. The morphology and structure of the La2O3/Nd2O3 bilayer dielectric films are studied using a field emission scanning electron microscope and x-ray diffraction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nomoto, N. Hirai, N. Yonega, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, IEEE Trans. Electron Dev. 52, 1519 (2005).

    Article  Google Scholar 

  2. H. Klauk, U. Zcherieschang, J. Pflaum, and M. Halik, Nature 445, 745 (2007).

    Article  Google Scholar 

  3. H. Sirringhaus, Adv. Matter. 26, 1319 (2014).

    Article  Google Scholar 

  4. S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, Appl. Phys. Lett. 92, 103313 (2008).

    Article  Google Scholar 

  5. Y.D. Park, D.H. Kim, Y. Jang, M. Hwang, and K. Cho, Appl. Phys. Lett. 88, 072101 (2006).

    Article  Google Scholar 

  6. H. Bong, W.H. Lee, D.Y. Lee, B.J. Kim, J.H. Cho, and K. Cho, App. Phy. Lett. 96, 192115 (2010).

    Article  Google Scholar 

  7. M.F. Chang, P.I. Lee, S.P. McAlister, and A. Chin, IEEE Electron Device Lett. 30, 133 (2009).

    Article  Google Scholar 

  8. B.C. Shekar, J. Lee, and S.W. Rhee, Korean J. Chem. Eng. 21, 267 (2004).

    Article  Google Scholar 

  9. O. Acton, G. Ting, H. Ma, J.W. Ka, H.L. Yip, N.M. Tucker, and A.K.Y. Jen, Adv. Matter 20, 3697 (2008).

    Article  Google Scholar 

  10. Y. Lu, W.H. Lee, H.S. Lee, Y. Jang, and K. Cho, Appl. Phys. Lett. 94, 113303 (2009).

    Article  Google Scholar 

  11. S.Z. Chang, H.Y. Yu, and C. Adelmann, IEEE Electron Device Lett. 29, 430 (2008).

    Article  Google Scholar 

  12. T. Busani, R.A.B. Devine, and P. Gonon, ECS Trans. 1, 331 (2006).

    Article  Google Scholar 

  13. M.D. Kannan, S.K. Narayandass, C. Balasubramanian, and D. Magalaraj, Phys. Stat. Sol. A 128, 427 (1991).

    Article  Google Scholar 

  14. M.D. Kannan, S.K. Narayandass, C. Balasubramanian, and D. Magalaraj, Phys. Stat. Sol. A 121, 515 (1990).

    Article  Google Scholar 

  15. J. Zhao and K. Uosaki, Appl. Phys. Lett. 83, 2034 (2003).

    Article  Google Scholar 

  16. S. Khound and R. Sarma, Appl. Phys. A 124, 1 (2018).

    Google Scholar 

  17. P. Balk, Adv. Mater. 7, 703 (1995).

    Article  Google Scholar 

  18. C.V. Ramanna, S. Utsunomiya, R.C. Ewing, U. Becker, V.V. Atuchin, V.S. Aliev, and V.N. Kruchinin, Appl. Phys. Lett. 92, 011917 (2008).

    Article  Google Scholar 

  19. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, and C.V. Ramana, Opt. Mater. 34, 893 (2012).

    Article  Google Scholar 

  20. V.A. Shvets, V.S. Aliev, D.V. Gritsenko, S.S. Shaimeev, E.V. Fedosenko, S.V. Rykhlitski, V.V. Atuchin, V.A. Gritsenko, V.M. Tapilin, and H. Wong, J. Noncryst. Solids 354, 3025 (2008).

    Article  Google Scholar 

  21. C.D. Dimitrakopoulos and D.J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).

    Article  Google Scholar 

  22. N.F. Mott, Adv Phys. 16, 49 (1967).

    Article  Google Scholar 

  23. S.S. Cheng, C.Y. Yang, C.W. Ou, Y.C. Chuang, M.C. Wu, and C.W. Chu, Electrochem. Solid-State Lett. 11, 118 (2008).

    Article  Google Scholar 

  24. C.D. Dimitrakopoulos, S. Purushothamam, J. Kymissis, A. Callegari, and J.M. Shaw, Science 282, 822 (1999).

    Article  Google Scholar 

  25. G. Horowitz, R. Hajalaoui, D. Fichou, and A.E. Kassami, J. Appl. Phys. 85, 3202 (1999).

    Article  Google Scholar 

  26. C.V. Ramana, R.S. Vemuri, V.V. Kaichev, V.A. Kochubey, A.A. Saraev, and V.V. Atuchin, ACS Appl. Mater. Interfaces 3, 4370 (2011).

    Article  Google Scholar 

  27. V.V. Atuchin, A.V. Kalinkin, V.A. Kochubey, V.N. Kruchinin, R.S. Vemuri, and C.V. Ramana, J. Vac. Sci. Technol. A 29, 021004 (2011).

    Article  Google Scholar 

  28. Q.J. Sun, J. Zhuang, Y. Yan, Y. Zhou, S.T. Han, L. Zhou, and V.A.L. Roy, Phys. Status Solidi A 213, 79 (2016).

    Article  Google Scholar 

  29. S.Y. Yang, K. Shin, and C.E. Park, Adv. Funct. Mater. 15, 2005 (1806).

    Google Scholar 

  30. E.A. VanEtten, E.S. **menes, L.T. Tarasconi, T.S. Garcia, and M.C. Forte, Thin Solid Films 568, 111 (2014).

    Article  Google Scholar 

  31. U. Zschieschang, R.T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A 95, 139 (2009).

    Article  Google Scholar 

  32. R.A. Street, A. Salleo, and M.L. Chabinyc, Phys. Rev. B 68, 85316 (2003).

    Article  Google Scholar 

  33. A. Salleo and R.A. Street, Phys. Rev. B 70, 235324 (2004).

    Article  Google Scholar 

  34. T.H. Kim, C.K. Song, J.S. Park, and M.C. Suh, IEEE Electron Device Lett. 28, 874 (2007).

    Article  Google Scholar 

  35. K. Fukuda, T. Suzuki, T. Kobayashi, D. Kumaki, and S. Tokito, Phys. Status Sol. A 210, 839 (2013).

    Article  Google Scholar 

  36. R. Sarma, D. Saikia, P. Saikia, P.K. Saikia, and B. Baishya, Braz. J. Phys. 40, 357 (2010).

    Article  Google Scholar 

  37. D. Saikia and P.K. Saikia, ECS Solid State Lett. 4, 51 (2015).

    Article  Google Scholar 

  38. P.K. Saikia, U.J. Mahanta, P. Saikia, B. Baishya, R. Sarma, and D. Saikia, Chiang Mai J. Sci. 39, 263 (2012).

    Google Scholar 

  39. R. Sarma, D. Saikia, K. Konwar, and D. Baishya, Indian J. Phys. 84, 547 (2010).

    Google Scholar 

  40. P. Gogoi, R. Saikia, D. Saikia, R.P. Dutta, and S. Changmai, Phys. Status Soldi A 212, 826 (2015).

    Article  Google Scholar 

  41. T.H. Huang, K.C. Liu, Z. Pei, W.K. Lin, and S.T. Chang, Org. Electron. 12, 1527 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarika Khound.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khound, S., Sarma, R. High Performance Organic Thin Film Transistors Using Pentacene-Based Rare-Earth Oxide Bilayer Gate Dielectric. J. Electron. Mater. 48, 4491–4497 (2019). https://doi.org/10.1007/s11664-019-07232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07232-4

Keywords

Navigation