Log in

Investigation of the Performance of Poly(Methyl-Acrylate) as a Gate Dielectric in Organic Thin-Film Transistors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we present two regioregular poly(3-hexylthiophene-2,5-diyl) (rr-P3HT)-based top-gate bottom-contact configured organic thin-film transistors (OTFTs) using poly(α-methyl acrylate) (PMA) and poly(methyl methacrylate) (PMMA) polymers separately as gate insulators for comparison. In order to compare only the performance of the dielectrics, the other parts of the devices were kept qualitatively and quantitatively identical. Unlike PMMA, PMA is flexible, and flexibility is a desirable property for an OTFT. Thus, utilizing PMA can be advantageous if it supports higher performance of the transistor. In this respect, the electronic parameters of the fabricated devices were extracted from transfer and output characteristics to determine the performance of PMA in OTFT applications. Results showed that the mobility of the OTFT with PMA (PMA-OTFT) was nearly three times greater than that of the OTFT with PMMA (PMMA-OTFT), while the PMA-OTFT threshold voltage (VTH) was slightly less than that of the PMMA-OTFT, which was likely because of the greater effective capacitance (CEFF) of the PMA layer compared to that of the PMMA layer. This is the main advantage of the PMA. On the other hand, the major downside is found in the reduced on-to-off current (ION/IOFF) and increased subthreshold swing originating from a huge off-current (IOFF), implying the existence of a large gate leakage current. Increasing the thickness of the PMA layer could reduce such large gate leakage current. However, this would lead to additional increase in the OTFT operating voltage. Therefore, further studies are required to improve the insulating property of the PMA polymer in order to substitute it for the PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization (Berlin: Springer, 2009).

    Book  Google Scholar 

  2. E. Cantatore, T.C.T. Geuns, G.H. Gelinck, E. van Veenendaal, A.F.A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D.M. de Leeuw, IEEE J. Solid-State Circuits 42, 84 (2007).

    Article  Google Scholar 

  3. W.L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dötz, and S. Mhaisalkar, J. Mater. Chem. 21, 5203 (2011).

    Article  CAS  Google Scholar 

  4. B. Chandar Shekar, J. Lee, and S.W. Rhee, Korean J. Chem. Eng. 21, 267 (2004).

    Article  Google Scholar 

  5. L. Torsi, A. Dodabalapur, L. Sabbatini, and P. Zambonin, Sens. Actuators B Chem. 67, 312 (2000).

    Article  CAS  Google Scholar 

  6. H. Wang, Z. Ji, M. Liu, L. Shang, G. Liu, X. Liu, J. Liu, and Y. Peng, Sci. China Ser. E Technol. Sci. 52, 3105 (2009).

    Article  CAS  Google Scholar 

  7. W. Tang, J. Li, J. Zhao, W. Zhang, F. Yan, and X. Guo, IEEE Electron Device Lett. 36, 950 (2015).

    Article  CAS  Google Scholar 

  8. A. Facchetti, M.H. Yoon, and T.J. Marks, Adv. Mater. 17, 1705 (2005).

    Article  CAS  Google Scholar 

  9. L.L. Chua, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Appl. Phys. Lett. 84, 3400 (2004).

    Article  CAS  Google Scholar 

  10. L.L. Chua, J. Zaumseil, J.F. Chang, E.C.W. Ou, P.K.H. Ho, H. Sirringhaus, and R.H. Friend, Nature 434, 194 (2005).

    Article  CAS  Google Scholar 

  11. X.F. Lu, L.A. Majewski, and A.M. Song, Org. Electron. 9, 473 (2008).

    Article  CAS  Google Scholar 

  12. Y. Kato, S. Iba, R. Teramoto, T. Sekitani, T. Someya, H. Kawaguchi, and T. Sakurai, Appl. Phys. Lett. 84, 3789 (2004).

    Article  CAS  Google Scholar 

  13. J.A. Rogers, Z. Bao, A. Dodabalapur, and A. Makhija, IEEE Electron Device Lett. 21, 100 (2000).

    Article  CAS  Google Scholar 

  14. J.A. Rogers, Z. Bao, and V.R. Raju, Appl. Phys. Lett. 72, 2716 (1998).

    Article  CAS  Google Scholar 

  15. B. Chandar Shekar, V. Veeravazhuthi, S. Sakthivel, D. Mangalaraj, and S. Narayandass, Thin Solid Films 348, 122 (1999).

    Article  CAS  Google Scholar 

  16. C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, M.G. Kane, I.G. Hill, M.S. Hammond, J. Campi, B.K. Greening, J. Francl, and J. West, Appl. Phys. Lett. 80, 1088 (2002).

    Article  CAS  Google Scholar 

  17. R. Parashkov, E. Becker, G. Ginev, T. Riedl, H.H. Johannes, and W. Kowalsky, J. Appl. Phys. 95, 1594 (2004).

    Article  CAS  Google Scholar 

  18. X. Peng, G. Horowitz, D. Fichou, and F. Garnier, Appl. Phys. Lett. 57, 2013 (1990).

    Article  CAS  Google Scholar 

  19. C.J. Drury, C.M.J. Mutsaers, C.M. Hart, M. Matters, and D.M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998).

    Article  CAS  Google Scholar 

  20. M. Halik, H. Klauk, U. Zschieschang, T. Kriem, G. Schmid, W. Radlik, and K. Wussow, Appl. Phys. Lett. 81, 289 (2002).

    Article  CAS  Google Scholar 

  21. M. Matters, D.M. de Leeuw, M.J.C.M. Vissenberg, C.M. Hart, P.T. Herwig, T. Geuns, C.M.J. Mutsaers, and C.J. Drury, Opt. Mater. (Amst) 12, 189 (1999).

    Article  CAS  Google Scholar 

  22. Y.Y. Lin, D.J. Gundlach, S.F. Nelson, and T.N. Jackson, IEEE Electron Device Lett. 18, 606 (1997).

    Article  CAS  Google Scholar 

  23. J.A. Rogers, Z. Bao, A. Makhija, and P. Braun, Adv. Mater. 11, 741 (1999).

    Article  CAS  Google Scholar 

  24. S. Uemura, M. Yoshida, S. Hoshino, T. Kodzasa, and T. Kamata, Thin Solid Films 438–439, 378 (2003).

    Article  Google Scholar 

  25. D.J. Mead and R.M. Fuoss, J. Am. Chem. Soc. 64, 2389 (1942).

    Article  CAS  Google Scholar 

  26. K. Sethuraman, S. Ochiai, K. Kojima, and T. Mizutani, Appl. Phys. Lett. 92, 183302 (2008).

    Article  Google Scholar 

  27. Y. Zhou, H. Cheun, S. Choi, C. Fuentes-Hernandez, and B. Kippelen, Org. Electron. 12, 827 (2011).

    Article  CAS  Google Scholar 

  28. V. Bocharova, Z. Wojnarowska, P.F. Cao, Y. Fu, R. Kumar, B. Li, V.N. Novikov, S. Zhao, A. Kisliuk, T. Saito, J.W. Mays, B.G. Sumpter, and A.P. Sokolov, J. Phys. Chem. B 121, 11511 (2017).

    Article  CAS  Google Scholar 

  29. A.K. Tomar, S. Mahendia, R.P. Chahal, and S. Kumar, Synth. Met. 162, 820 (2012).

    Article  CAS  Google Scholar 

  30. W.S. Machado, I.A. Hummelgen, and I.E.E.E. Trans, Electron Devices 59, 1529 (2012).

    Article  CAS  Google Scholar 

  31. A. Demir, A. Atahan, S. Bağcı, M. Aslan, and M. Saif Islam, Philos. Mag. 96, 274 (2016).

    Article  CAS  Google Scholar 

  32. A. Demir, S. Bağcı, S.E. San, and Z. Doğruyol, Surf. Rev. Lett. 22, 1550038 (2015).

    Article  CAS  Google Scholar 

  33. F.A. Yildirim, R.R. Schliewe, W. Bauhofer, R.M. Meixner, H. Goebel, and W. Krautschneider, Org. Electron. 9, 70 (2008).

    Article  CAS  Google Scholar 

  34. L. Zhang, D. Yang, S. Yang, and B. Zou, Appl. Phys. A Mater. Sci. Process. 116, 1511 (2014).

    Article  CAS  Google Scholar 

  35. Z. Bao and J. Locklin, Organic Field-Effect Transistors (Boca Raton: CRC Press, 2007).

    Google Scholar 

  36. R. Yi, Z. Lou, Y. Hu, S. Cui, F. Teng, Y. Hou, and X. Liu, Sci. China Technol. Sci. 57, 1142 (2014).

    Article  CAS  Google Scholar 

  37. B. Gburek and V. Wagner, Org. Electron. 11, 814 (2010).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Düzce University Scientific Research Projects unit under Grant (2017.07.02.621) and (2015.05.03.381).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun Yardım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yardım, T., Demir, A., Allı, S. et al. Investigation of the Performance of Poly(Methyl-Acrylate) as a Gate Dielectric in Organic Thin-Film Transistors. J. Electron. Mater. 49, 3830–3836 (2020). https://doi.org/10.1007/s11664-020-08090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08090-1

Keywords

Navigation