Log in

Electrical & Physical Characterization of Silicon-Organic Asymmetrical Metal Insulator Semiconductor Capacitive Test Structure

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

To facilitate the assessment of device characteristics including mobility, threshold voltage, on current estimation, device non-uniformity map**, etc. without the complete fabrication of transistor structures of different channel lengths or specialized test structures with probes inside/outside the channel, we investigate in this work the impact of electrical and physical parameters on the capacitance-voltage (C − V) characteristics of a fundamental two-terminal, Silicon-Organic Asymmetric Metal-Insulator-Semiconductor (SO-AMIS) capacitive structure. The SO-AMIS test structure is a modified rendition of a regular MIS structure in which the top terminal is made considerably smaller than the bottom gate terminal. The C–V characteristics of this exceptionally asymmetric SO-AMIS structure originate due to the dispersion of the charge carriers into the channel and at any given frequency relies upon channel properties. The impact of contact resistance on measured impedance is least as the effective channel length that contributes to measured capacitance is made substantially large by choosing a small measurement frequency and/or large voltage. Two-dimensional numerical simulations results are performed to outline the effect of critical device parameters on the performance of the pentacene based SO-AMIS test structure. Temperature-dependent investigation is additionally conducted to further elaborate the study of the test structure and its model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sze SM (1981) Physics of Semiconductor Devices, 2nd edn. Wiley Interscience, New York

  2. Wang W, Shi X, Li X, Zhang Y (2016) Improved electrical properties of pentacene MIS capacitor with OTS modified Ta 2 O 5 dielectric. IEEE Electron Device Lett 37(10):1332–1335

    Article  CAS  Google Scholar 

  3. Nigam A, Nair PR, Premaratne M, Rao VR (2014) Role of injection barrier in capacitance-voltage measurements of organic devices. IEEE Electron Device Lett 35(5):581–583

    Article  CAS  Google Scholar 

  4. Nigam A, Premaratne M, Nair PR (2013) “On the validity of unintentional do** densities extracted using Mott–Schottky analysis for thin film organic devices. Org Electron 14(11):2902–2907

    Article  CAS  Google Scholar 

  5. Watson CP, Devynck M, Taylor DM (2013) “Photon-assisted capacitance–voltage study of organic metal–insulator–semiconductor capacitors. Org Electron 14(7):1728–1736

    Article  CAS  Google Scholar 

  6. Lu X, Minari T, Liu C, Kumatani A, Liu J-M, Tsukagoshi K (2012) Temperature dependence of frequency response characteristics in organic field-effect transistors. Appl Phys Lett 100(18):104

    Article  Google Scholar 

  7. Fujisaki Y, Inoue Y, Kurita T, Tokito S, Fujikake H, Kikuchi H (2004) Improvement of characteristics of organic thin-film transistor with anodized gate insulator by an electrolyte solution and low-voltage driving of liquid crystal by organic thin-film transistors. Jpn J Appl Phys 43(1):372

    Article  CAS  Google Scholar 

  8. Sleiman A et al (2012) Pentacene-based metal-insulator-semiconductor memory structures utilizing single walled carbon nanotubes as a nanofloating gate. Appl Phys Lett 100(2):14

    Article  Google Scholar 

  9. Lim J-S, Shin P-K, Lee B-J, Lee S (2010) “Plasma polymerized methyl methacrylate gate dielectric for organic thin-film transistors. Org Electron 11(5):951–954

    Article  CAS  Google Scholar 

  10. William S, Mabrook M, Taylor D (2009) Floating-gate memory based on an organic metal-insulator-semiconductor capacitor. Appl Phys Lett 95(9):226

    Article  Google Scholar 

  11. Ukah N, Granstrom J, Sanganna Gari R, King G, Guha S (2011) Low-operating voltage and stable organic field-effect transistors with poly (methyl methacrylate) gate dielectric solution deposited from a high dipole moment solvent. Appl Phys Lett 99(24):273

    Article  Google Scholar 

  12. Park J et al (2012) Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries. J Appl Phys 111(10):104512

    Article  Google Scholar 

  13. Noh YH, Park SY, Seo S-M, Lee HH (2006) Root cause of hysteresis in organic thin film transistor with polymer dielectric. Org Electron 7(5):271–275

    Article  CAS  Google Scholar 

  14. Estrada M et al (2013) Frequency and voltage dependence of the capacitance of MIS structures fabricated with polymeric materials. IEEE Trans Electron Devices 60(6):2057–2063

    Article  CAS  Google Scholar 

  15. Yang YS et al (2002) Deep-level defect characteristics in pentacene organic thin films. Appl Phys Lett 80(9):1595–1597

    Article  CAS  Google Scholar 

  16. Deng L et al (2011) Effects of different annealing gases on pentacene OTFT with HfLaO gate dielectric. IEEE Electron Device Lett 32(1):93–95

    Article  CAS  Google Scholar 

  17. Shin I-S et al (2012) Nonvolatile floating gate organic memory device based on pentacene/CdSe quantum dot heterojuction. Appl Phys Lett 100(18):103

    Article  Google Scholar 

  18. Park JH, Kang CH, Kim YJ, Lee YS, Choi JS (2004) Characteristics of pentacene-based thin-film transistors. Mater Sci Eng C 24(1):27–29

    Article  Google Scholar 

  19. Tanaka Y, Noguchi Y, Kraus M, Brütting W, Ishii H (2013) “Three-terminal capacitance–voltage measurements of pentacene field-effect transistors during operation. Org Electron 14(10):2491–2496

    Article  CAS  Google Scholar 

  20. Jung K-D, Kim YC, Kim B-J, Park B-G, Shin H, Lee JD (2008) An analytic current–voltage equation for top-contact organic thin film transistors including the effects of variable series resistance. Jpn J Appl Phys 47(4S):3174

    Article  CAS  Google Scholar 

  21. Liang Y, Chang H-C, Ruden PP, Daniel Frisbie C (2011) Examination of Au, Cu, and Al contacts in organic field-effect transistors via displacement current measurements. J Appl Phys 110(6):064514

    Article  Google Scholar 

  22. Chang H-C, Ruden PP, Liang Y, Frisbie CD (2010) Transient effects controlling the charge carrier population of organic field effect transistor channels. J Appl Phys 107(10):104502

    Article  Google Scholar 

  23. Agarwal R, Agarwal AK, Mazhari B (2016) Estimation of carrier mobility at organic semiconductor/insulator interface using an asymmetric capacitive test structure. AIP Adv 6(4):045017

    Article  Google Scholar 

  24. Agarwal R (2019) Characterization of process-induced nonuniformity using asymmetric metal–insulator–semiconductor capacitive test structure. IEEE Trans Electron Devices 66(9):3940–3945

    Article  CAS  Google Scholar 

  25. Agarwal R, Mazhari B (2018) An organic temperature sensor based on asymmetric metal insulator semiconductor capacitor with electrically tunable sensing area. IEEE Sensors Lett 2(1):1–4

    Article  Google Scholar 

  26. Agarwal R (2019) Threshold voltage extraction for organic thin film transistor in linear region using asymmetric metal insulator semiconductor capacitive test structure. Semicond Sci Technol 34(9):095024

    Article  CAS  Google Scholar 

  27. Silvaco I (2010) User manual of Silvaco ATLAS, software version 5.18.3.R, ed: Santa Clara, CA

  28. Deen MJ, Pascal F (2006) Electrical characterization of semiconductor materials and devices. J Mater Sci Mater Electron 17(8):549–575

    Article  CAS  Google Scholar 

  29. Bolognesi A et al (2004) Effects of grain boundaries, field-dependent mobility, and interface trap states on the electrical characteristics of pentacene TFT. IEEE Trans Electron Devices 51(12):1997–2003

    Article  CAS  Google Scholar 

  30. Shin W-J, Lee J-Y, Kim JC, Yoon T-H, Kim T-S, Song O-K (2008) Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes. Org Electron 9(3):333–338

    Article  CAS  Google Scholar 

  31. Agarwal R, Mazhari B (2018) Floating drain-based measurement of ON-state voltage of an OTFT for sensing applications. IEEE Trans Electron Devices 65(8):3460–3465

    Article  CAS  Google Scholar 

  32. Wakatsuki Y, Noda K, Wada Y, Toyabe T, Matsushige K (2011) Molecular do** effect in bottom-gate, bottom-contact pentacene thin-film transistors. J Appl Phys 110(5):054505

    Article  Google Scholar 

  33. Lee K, Shur MS, Drummond T, Morkoc H (1983) Current—Voltage and capacitance—Voltage characteristics of modulation-doped field-effect transistors. IEEE Trans Electron Devices 30(3):207–212

    Article  Google Scholar 

  34. Necliudov PV, Shur MS, Gundlach DJ, Jackson TN (2003) Contact resistance extraction in pentacene thin film transistors. Solid State Electron 47(2):259–262

    Article  CAS  Google Scholar 

  35. Amy F, Chan C, Kahn A (2005) Polarization at the gold/pentacene interface. Org Electron 6(2):85–91

    Article  CAS  Google Scholar 

  36. Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11(8):605–625

  37. Kanicki J (1988) Contact resistance to undoped and phosphorus-doped hydrogenated amorphous silicon films. Appl Phys Lett 53(20):1943–1945

    Article  CAS  Google Scholar 

  38. Ishii H, Seki K (1997) Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. IEEE Trans Electron Devices 44(8):1295–1301

    Article  CAS  Google Scholar 

  39. Estrada M et al (2005) Accurate modeling and parameter extraction method for organic TFTs. Solid State Electron 49(6):1009–1016

    Article  CAS  Google Scholar 

  40. Horowitz G, Lang P, Mottaghi M, Aubin H (2004) Extracting parameters from the current–voltage characteristics of organic field-effect transistors. Adv Func Mater 14(11):1069–1074

    Article  CAS  Google Scholar 

  41. Shukla D et al (2008) Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem Mater 20(24):7486–7491

    Article  CAS  Google Scholar 

  42. Di Carlo A, Piacenza F, Bolognesi A, Stadlober B, Maresch H (2005) Influence of grain sizes on the mobility of organic thin-film transistors. Appl Phys Lett 86(26):263501

    Article  Google Scholar 

  43. Gao J, Xu J, Zhu M, Ke N, Ma D (2007) Thickness dependence of mobility in CuPc thin film on amorphous SiO2 substrate. J Phys D: Appl Phys 40(18):5666

    Article  CAS  Google Scholar 

  44. Fu Y, Lin C, Tsai F-Y (2009) “High field-effect mobility from poly (3-hexylthiophene) thin-film transistors by solvent–vapor-induced reflow. Org Electron 10(5):883–888

    Article  CAS  Google Scholar 

  45. Li D, Borkent E-J, Nortrup R, Moon H, Katz H, Bao Z (2005) Humidity effect on electrical performance of organic thin-film transistors. Appl Phys Lett 86(4):042105

    Article  Google Scholar 

  46. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J Am Chem Soc 126(13):4084–4085

    Article  CAS  PubMed  Google Scholar 

  47. Ruiz R, Papadimitratos A, Mayer AC, Malliaras GG (2005) “Thickness dependence of mobility in pentacene thin-film transistors. Adv Mater 17(14):1795–1798

    Article  CAS  Google Scholar 

  48. Chun YS, Chang S, Lee SY (2011) Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature. Microelectron Eng 88(7):1590–1593

    Article  CAS  Google Scholar 

  49. Brown A, Jarrett C, De Leeuw D, Matters M (1997) Field-effect transistors made from solution-processed organic semiconductors. Synth Met 88(1):37–55

    Article  CAS  Google Scholar 

  50. Knipp D, Street RA, Völkel AR (2003) Morphology and electronic transport of polycrystalline pentacene thin-film transistors. Appl Phys Lett 82(22):3907–3909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the National Centre for Flexible Electronics (NCFlexE) and Samtel Centre for Display Technologies (SCDT) at the Indian Institute of Technology Kanpur (IITK), India. The valuable suggestions given by Dr. Baquer Mazhari, Professor, Dept of Electrical Engineering are highly appreciated and acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Complete.

Corresponding author

Correspondence to Rajesh Agarwal.

Ethics declarations

Conflict of Interest

There is no conflict of interest to declare.

Compliance with Ethical Standards

Yes.

Consent to Participate

Yes.

Consent for Publication

Yes.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R. Electrical & Physical Characterization of Silicon-Organic Asymmetrical Metal Insulator Semiconductor Capacitive Test Structure. Silicon 14, 1315–1327 (2022). https://doi.org/10.1007/s12633-020-00939-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00939-8

Keywords

Navigation