Log in

Simulation of the influence of the gate dielectric on amorphous indium-gallium-zinc oxide thin-film transistor reliability

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Indium-gallium-zinc oxide (IGZO) thin films have attracted significant attention for application in thin-film transistors (TFTs) due to their specific characteristics, such as high mobility and transparency. The performance of a-IGZO TFTs with four different insulators (SiO2 Si3N4, Al2O3 and HfO2) is examined using a numerical simulator (Silvaco Atlas). It is found that the output performance is significantly enhanced with high relative permittivity of the insulator. HfO2 gives the best performance: lower threshold voltage 0.23 V and subthreshold 0.09 V dec−1, higher field-effect mobility 13.73 cm2 s−1 V−1 and on current (Ion) and Ion/Ioff ratio \(2.81 \times 10^{ - 6}\) A, \(5.06 \times 10^{12}\), respectively. Therefore, HfO2 gate showed high stability compared with other gate insulator materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004). https://doi.org/10.1038/nature03090

    Article  Google Scholar 

  2. Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., Hosono, H.: Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303–4308 (2006). https://doi.org/10.1143/jjap.45.4303

    Article  Google Scholar 

  3. Park, J.S., Jeong, J.K., Mo, Y.G., Kim, H.D., Kim, S.: Il: improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Appl. Phys. Lett. 90, 2012–2015 (2007). https://doi.org/10.1063/1.2753107

    Google Scholar 

  4. Woo, C.H., Kim, Y.Y., Kong, B.H., Cho, H.K.: Effects of the thickness of the channel layer on the device performance of InGaZnO thin-film-transistors. Surf. Coatings Technol. 205, S168–S171 (2010). https://doi.org/10.1016/j.surfcoat.2010.07.036

    Article  Google Scholar 

  5. Olziersky, A., Barquinha, P., Vila, A., Magana, C., Fortunato, E., Morante, J.R., Martins, R.: Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 131, 512–518 (2011). https://doi.org/10.1016/j.matchemphys.2011.10.013

    Article  Google Scholar 

  6. Kim, K.A., Park, M.J., Lee, W.H., Yoon, S.M.: Characterization of negative bias-illumination-stress stability for transparent top-gate In–Ga–Zn–O thin-film transistors with variations in the incorporated oxygen content. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4938013

    Google Scholar 

  7. Lee, E., Chowdhury, M.D.H., Park, M.S., Jang, J.: Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4937441

    Article  Google Scholar 

  8. Heo, S., Lee, D., Koo, Y., Kwon, Y., Kim, K., Chung, J., Cheol, J., Su, G., Soo, J., Tahir, D., Jae, H., Young, H.: Origin of positive V th shift and mobility effects in amorphous GaInZnO thin films. Thin Solid Films 616, 456–460 (2016). https://doi.org/10.1016/j.tsf.2016.09.005

    Article  Google Scholar 

  9. Domen, K., Miyase, T., Abe, K., Hosono, H., Kamiya, T.: Positive-bias stress test on amorphous In–Ga–Zn–O thin film transistor: annealing-temperature dependence. J. Disp. Technol. 10, 975–978 (2014). https://doi.org/10.1109/JDT.2014.2350518

    Article  Google Scholar 

  10. Cho, E.N., Kang, J.H., Yun, I.: Effects of channel thickness variation on bias stress instability of InGaZnO thin-film transistors. Microelectron. Reliab. 51, 1792–1795 (2011). https://doi.org/10.1016/j.microrel.2011.07.018

    Article  Google Scholar 

  11. Yamada, K., Nomura, K., Abe, K., Takeda, S., Hosono, H.: Examination of the ambient effects on the stability of amorphous indium-gallium-zinc oxide thin film transistors using a laser-glass-sealing technology. Appl. Phys. Lett. 105, 2012–2016 (2014). https://doi.org/10.1063/1.4896948

    Google Scholar 

  12. Chun, Y.S., Chang, S., Lee, S.Y.: Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature. Microelectron. Eng. 88, 1590–1593 (2011). https://doi.org/10.1016/j.mee.2011.01.076

    Article  Google Scholar 

  13. Park, J.C., Lee, H.-N., Chul, J.: Dry etch damage and recovery of gallium indium zinc oxide thin-film transistors with etch-back structures. Displays 33, 133–135 (2012). https://doi.org/10.1016/j.displa.2012.05.001

    Article  Google Scholar 

  14. Walther, S., Polster, S., Meyer, B., Jank, M.P.M., Ryssel, H., Frey, L.: Properties of SiO2 and Si3N4 as gate dielectrics for printed ZnO transistors. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct 29, 01A601 (2011). https://doi.org/10.1116/1.3524291

    Article  Google Scholar 

  15. Jejurikar, S.M., De Souza, M.M., Adhi, K.P.: Understanding the role of the insulator in the performance of ZnO TFTs. Thin Solid Films 518, 1177–1179 (2009). https://doi.org/10.1016/j.tsf.2009.05.066

    Article  Google Scholar 

  16. Kim, E., Kim, C.K., Lee, M.K., Bang, T., Choi, Y.K., Park, S.H.K., Choi, K.C.: Influence of the charge trap density distribution in a gate insulator on the positive-bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 108, 1–6 (2016). https://doi.org/10.1063/1.4948765

    Google Scholar 

  17. Sisman, Z., Bolat, S., Okyay, A.K.: Atomic layer deposition for vertically integrated ZnO thin film transistors: toward 3D high packing density thin film electronics. Phys. Status Solidi C 14, 1700128 (2017). https://doi.org/10.1002/pssc.201700128

    Google Scholar 

  18. Yuan, L., Zou, X., Fang, G., Wan, J., Zhou, H., Zhao, X.: High-Performance amorphous indium gallium zinc oxide thin-film transistors with HfO × N y/HfO 2/HfO × N y tristack gate dielectrics. IEEE Electron. Device Lett. 32, 42–44 (2011). https://doi.org/10.1109/LED.2010.2089426

    Article  Google Scholar 

  19. Oh, H., Yoon, S.M., Ryu, M.K., Hwang, C.S., Yang, S., Park, S.H.K.: Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3510471

    Google Scholar 

  20. Adaika, M., Meftah, A., Sengouga, N., Henini, M.: Numerical simulation of bias and photo stress on indium-gallium-zinc-oxide thin film transistors. Vacuum 120, 59–67 (2015). https://doi.org/10.1016/j.vacuum.2015.04.021

    Article  Google Scholar 

  21. Kim, Y., Kim, S., Kim, W., Bae, M., Jeong, H.K., Kong, D., Choi, S., Kim, D.M., Kim, D.H.: Amorphous InGaZnO thin-film transistors—part II: modeling and simulation of negative bias illumination stress-induced instability. IEEE Trans. Electron Devices 59, 2699–2706 (2012). https://doi.org/10.1109/TED.2012.2208971

    Article  Google Scholar 

  22. Ueoka, Y., Ishikawa, Y., Bermundo, J.P., Yamazaki, H., Urakawa, S., Fujii, M., Horita, M., Uraoka, Y.: Density of states in amorphous In-Ga-Zn-O thin-film transistor under negative bias illumination stress. ECS J. Solid State Sci. Technol. 3, Q3001–Q3004 (2014). https://doi.org/10.1149/2.001409jss

    Article  Google Scholar 

  23. Fichtner, W., Rose, D.J.D.J., Bank, R.E.R.E.: Semiconductor device simulation. IEEE Trans. Electron Devices 30, 1018–1030 (1983). https://doi.org/10.1109/T-ED.1983.21256

    Article  MATH  Google Scholar 

  24. Kamiya, T., Nomura, K., Hosono, H.: Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010). https://doi.org/10.1088/1468-6996/11/4/044305

    Article  Google Scholar 

  25. Park, S., Kim, C.-H., Lee, W., Sung, S., Yoon, M.: Sol-gel metal oxide dielectrics for all-solution-processed electronics. Mater. Sci. Eng. R Reports. 114, 1–22 (2017). https://doi.org/10.1016/j.mser.2017.01.003

    Article  Google Scholar 

  26. Lee, K.H., Jung, J.S., Son, K.S., Park, J.S., Kim, T.S., Choi, R., Jeong, J.K., Kwon, J.Y., Koo, B., Lee, S.: The effect of moisture on the photon-enhanced negative bias thermal instability in Ga–In–Zn–O thin film transistors. Appl. Phys. Lett. 95, 2012–2015 (2009). https://doi.org/10.1063/1.3272015

    Google Scholar 

  27. Dongsik, K., Hyunkwnag, J., Yongsik, K., Minkyung, B., Jaeman, J., Jeahyeong, K., Woojoon, K., Inseok, H., Dong, M.K., Dae, H.K.: Effect of the active layer thickness on the negative bias illumination stress-induced instability in amorphous InGaZnO thin-film transistors. J. Korean Phys. Soc. 59, 505 (2011). https://doi.org/10.3938/jkps.59.505

    Article  Google Scholar 

  28. Kim, C.E., Cho, E.N., Moon, P., Kim, G.H., Kim, D.L., Kim, H.J., Yun, I.: Density-of-states modeling of solution-processed InGaZnO thin-film transistors. IEEE Electron Device Lett. 31, 1131–1133 (2010). https://doi.org/10.1109/LED.2010.2061832

    Article  Google Scholar 

  29. Jeong, J.H.J.K., Won Yang, H., Jeong, J.H.J.K., Mo, Y.G., Kim, H.D.: Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, 10–13 (2008). https://doi.org/10.1063/1.2990657

    Google Scholar 

  30. Lee, J., Park, J.S., Pyo, Y.S., Lee, D.B., Kim, E.H., Stryakhilev, D., Kim, T.W., **, D.U., Mo, Y.G.: The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 95, 1–4 (2009). https://doi.org/10.1063/1.3232179

    Google Scholar 

  31. Wager, J.F., Yeh, B., Hoffman, R.L., Keszler, D.A.: An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18, 53–61 (2014). https://doi.org/10.1016/j.cossms.2013.07.002

    Article  Google Scholar 

  32. Fung, T.C., Chuang, C.S., Chen, C., Abe, K., Cottle, R., Townsend, M., Kumomi, H., Kanicki, J.: Two-dimensional numerical simulation of radio frequency sputter amorphous In–Ga–Zn–O thin-film transistors. J. Appl. Phys. 106, 1–10 (2009). https://doi.org/10.1063/1.3234400

    Article  Google Scholar 

  33. Silvaco, I.: Atlas user’s manual device simulation software (2013)

  34. Robertson, J.: Band offsets of high dielectric constant gate oxides on silicon. J. Non Cryst. Solids 303, 94–100 (2002). https://doi.org/10.1016/S0022-3093(02)00972-9

    Article  Google Scholar 

  35. Gervais, F.: Aluminum oxide (Al2O3). In: Palik, E.D. (ed.) Handbook of Optical Constants of Solids, pp. 761–775. Academic Press, Boston (1998)

    Chapter  Google Scholar 

  36. Rignanese, G.-M., Gonze, X., Jun, G., Cho, K., Pasquarello, A.: First-principles investigation of high-k dielectrics: comparison between the silicates and oxides of hafnium and zirconium. Phys. Rev. B. 69, 184301 (2004). https://doi.org/10.1103/PhysRevB.69.184301

    Article  Google Scholar 

Download references

Acknowledgements

Mohamed Labed et al. would like to thank the University of Biskra for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouredine Sengouga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labed, M., Sengouga, N. Simulation of the influence of the gate dielectric on amorphous indium-gallium-zinc oxide thin-film transistor reliability. J Comput Electron 18, 509–518 (2019). https://doi.org/10.1007/s10825-019-01316-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01316-4

Keywords

Navigation