Log in

Hybrid bilayer gate dielectric-based organic thin film transistors

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Organic thin film transistors (OTFTs) are key building blocks for flexible, low cost electronics systems. They provide a viable alternative for silicon-based electronics with added advantages of low cost and flexibility. However, few issues like high-operating voltage, low-switching speed, high-leakage current and reliability are still a challenge. The overall performance of an OTFT depends on organic semiconductors and gate dielectric interface. In this paper, we review the current status and trends in the choice of dielectric layer for OTFTs. As a starting point, the performance parameters of an OTFT and their dependence on the dielectric layer are briefly discussed. A variety of dielectric materials which includes high-k inorganic, organic, surface coated inorganics and nanocomposites are also presented. The advantages and drawbacks of each of these materials are discussed in detail. We reviewed the latest developments in the dielectric materials especially, self-assembled monolayers (SAMs), hybrid bilayers and nanocomposites. SAM-based OTFTs offer several advantages but shift in the threshold voltage remains a concern. Nanocomposites are a latest addition to the dielectric materials, which offer advantages like solution processing and improved dielectric constant but have a rough surface. A hybrid bilayer that incorporates the inorganic dielectric as a base layer and a thin polymer layer over it to improve the surface properties offers several desirable characteristics over the other choices. Hence, we propose that hybrid bilayer gate dielectrics shall play a pivotal role in improving the OTFT performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ryu G S, Kim J S, Jeong S H and Song C K 2013 Org. Electron. Phys. Mater. Appl. 14 1218

    CAS  Google Scholar 

  2. Cantatore E, Geuns T C T, Gelinck G H, Van Veenendaal E, Gruijthuijsen A F A, Schrijnemakers L et al 2007 IEEE J. Solid-State Circuits 42 84

    Google Scholar 

  3. Sokolov A N, Tee B C K, Bettinger C J, Tok J B H and Bao Z 2012 Acc. Chem. Res. 45 361

    CAS  Google Scholar 

  4. Ling Q D, Liaw D J, Zhu C, Chan D S H, Kang E T and Neoh K G 2008 Prog. Polym. Sci. 33 917

    CAS  Google Scholar 

  5. Pantisano L, Blomme P, Kaczer B, Groeseneken G and Akinwande A I 2005 IEEE J. Solid-State Circuits 52 2819

    Google Scholar 

  6. Zaumseil J and Sirringhaus H 2007 Chem. Rev. 107 1296

    CAS  Google Scholar 

  7. Stallinga P 2011 Adv. Mater. 23 3356

    CAS  Google Scholar 

  8. Zschieschang U, Ante F, Kälblein D, Yamamoto T, Takimiya K, Kuwabara H et al 2011 Org. Electron. 12 370

    Google Scholar 

  9. Melville O A, Lessard B H and Bender T P 2015 ACS Appl. Mater. Interfaces 7 13105

    CAS  Google Scholar 

  10. Choe Y, Hye M, Kim J, Ryu G, Noh Y, Ho Y et al 2016 Org. Electron. 36 171

    CAS  Google Scholar 

  11. Deng L F, Tang W M, Leung C H, Lai P T, Xu J P and Chec C M 2008 Electron devices solid-state circuits 2008 EDSSC 2008 IEEE Int. Conf. 1

  12. Li J, Zhao Y, Tan H S, Guo Y, Di C A, Yu G et al 2012 Sci. Rep. 2 754

    Google Scholar 

  13. Tang W, Li J, Zhao J, Zhang W, Yan F and Guo X 2015 IEEE Electron. Device Lett. 36 950

    CAS  Google Scholar 

  14. Katz H E and Bao Z 2000 J. Phys. Chem. B 104 671

    CAS  Google Scholar 

  15. Yi M, Guo Y, Guo J, Yang T, Chai Y, Fan Q et al 2014 J. Mater. Chem. C 2 2998

    CAS  Google Scholar 

  16. Kim J W, Oh J D, Kim D, Lee H Y, Ha Y G and Choi J H 2016 J. Mater. Chem. C 4 7999

    CAS  Google Scholar 

  17. Huang T H, Liu K C, Pei Z, Lin W K and Chang S T 2011 Org. Electron. Phys., Mater. Appl. 12 1527

  18. Kraft U, Sejfi M, Kang M J, Takimiya K, Zaki T, Letzkus F et al 2015 Adv. Mater. 27 998

    CAS  Google Scholar 

  19. Wrachien N, Cester A, Lago N, Rizzo A, D’Alpaos R, Stefani A et al 2015 Solid State Electron. 113 151

    CAS  Google Scholar 

  20. Fan C L, Chiu P C, Lin Y Z, Yang T H and Chiang C Y 2011 Semicond. Sci. Technol. 26 125007

    Google Scholar 

  21. Chen H M, Chang T C, Tai Y H, Chiang H C, Liu K H, Chen M C et al 2016 IEEE Electron. Device Lett. 37 228

    Google Scholar 

  22. Roichman Y and Tessler N 2002 Appl. Phys. Lett. 80 151

    CAS  Google Scholar 

  23. Feng L, Xu X and Guo X 2011 ECS Trans. 37 105

    CAS  Google Scholar 

  24. Mittal P, Negi Y S and Singh R K 2016 Microelectron. Eng. 150 7

    CAS  Google Scholar 

  25. Shim C, Maruoka F and Hattori R 2010 IEEE Trans. Electron. Devices 57 195

    CAS  Google Scholar 

  26. Li C, Pan F, Wang X, Wang L, Wang H, Wang H et al 2009 Org. Electron. 10 948

    CAS  Google Scholar 

  27. Zocco A T, You H, Hagen J A and Steckl A J 2014 Nanotechnology 25 094550

    Google Scholar 

  28. Zhou Y, Fuentes-hernandez C, Shim J, Meyer J, Giordano A J, Li H et al 2012 Science 336 327

    CAS  Google Scholar 

  29. Kumar B, Kaushik B K and Negi Y S 2014 J. Mater. Sci. Mater. Electron. 25 1

    CAS  Google Scholar 

  30. Dimitrakopoulos C D and Malenfant P R L 2002 Adv. Mater. 14 99

    CAS  Google Scholar 

  31. Kumar Singh V and Mazhari B 2013 Appl. Phys. Lett. 102 253304

    Google Scholar 

  32. Meijer E J, Tanase C, Blom P W M, Van Veenendaal E, Huisman B H, De Leeuw D M et al 2002 Appl. Phys. Lett. 80 3838

    CAS  Google Scholar 

  33. Horowitz G, Hajlaoui M E and Hajlaoui R 2000 J. Appl. Phys. 87 4456

    CAS  Google Scholar 

  34. Cui Q, Gu C, Liu J, Feng L, Wang S and Guo X 2014 J. Disp. Technol. 10 615

    CAS  Google Scholar 

  35. Horowitz B G, Lang P, Mottaghi M and Aubin H 2004 Adv. Funct. Mater. 14 1069

    CAS  Google Scholar 

  36. Marinov O, Jamal Deen M, Feng C and Wu Y 2014 J. Appl. Phys. 115 345061

    Google Scholar 

  37. Cheng S S, Yang C Y, Ou C W, Chuang Y C, Wu M C and Chu C W 2008 Electrochem. Solid-State Lett. 11 H118

    CAS  Google Scholar 

  38. Kalb W L and Batlogg B 2010 Phys. Rev. B - Condens. Matter Mater. Phys. 81 1

    Google Scholar 

  39. Liu Z, Oh J H, Roberts M E, Wei P, Paul B C and Okajima M 2009 Appl. Phys. Lett. 94 132

    Google Scholar 

  40. Seong H, Baek J, Pak K and Im S G 2015 Adv. Funct. Mater. 25 4462

    CAS  Google Scholar 

  41. Kim S Y, Ahn T, Pyo S and Yi M 2009 Curr. Appl. Phys. 9 913

    Google Scholar 

  42. Yuan G C, Xu Z, Gong C, Cai Q J, Lu Z S, Shi J S et al 2009 Appl. Phys. Lett. 94 151105

    Google Scholar 

  43. Wang W, Han J, Ying J, **ang L and **e W 2014 Appl. Phys. Lett. 105 1

    Google Scholar 

  44. Dimitrakopoulos C D 1999 Science 283 822

    CAS  Google Scholar 

  45. Lee J B, Chang P C, Liddle J A and Subramanian V 2005 IEEE Trans. Electron. Devices 52 1874

    CAS  Google Scholar 

  46. Islam M N 2011 J. Appl. Phys. 110 1149061

    Google Scholar 

  47. Kim H, Bae J H, Lee S D and Horowitz G 2012 Org. Electron. Phys., Mater. Appl. 13 1255

    CAS  Google Scholar 

  48. Seol Y G, Noh H Y, Lee S S, Ahn J H and Lee N E 2008 Appl. Phys. Lett. 93 1

    Google Scholar 

  49. Hengen S, Alt M, Hernandez-Sosa G, Giehl J, Lemmer U and Mechau N 2014 Org. Electron. 15 829

    CAS  Google Scholar 

  50. Wang W, Ma D, Pan S and Yang Y 2012 Appl. Phys. Lett. 101 031901

    Google Scholar 

  51. Ha T J 2014 Appl. Phys. Lett. 105 114

    Google Scholar 

  52. Noh Y H, Young Park S, Seo S M, Lee H H, Park S Y, Seo S M et al 2006 Org. Electron. Phys., Mater. Appl. 7 271

    CAS  Google Scholar 

  53. Huang T H, Pei Z, Lin W K, Chang S T and Liu K C 2010 Thin Solid Films 518 7381

    CAS  Google Scholar 

  54. Diemer P J, Hayes J, Welchman E, Hallani R, Pookpanratana S J, Hacker C A et al 2017 Adv. Electron. Mater. 3 1600294

    Google Scholar 

  55. Orgiu E, Locci S, Fraboni B, Scavetta E, Lugli P and Bonfiglio A 2011 Org. Electron. Phys., Mater. Appl. 12 477

    CAS  Google Scholar 

  56. Lee S, Koo B, Shin J, Lee E, Park H and Kim H 2006 Appl. Phys. Lett. 88 162109

    Google Scholar 

  57. Veres J, Ogier S, Lloyd G and De Leeuw D 2004 Chem. Mater. 16 4543

    CAS  Google Scholar 

  58. Ortiz P, Facchetti A and Marks T J 2010 Chem. Rev. 110 205

    CAS  Google Scholar 

  59. Facchetti A, Yoon M H and Marks T J 2005 Adv. Mater. 17 1705

    CAS  Google Scholar 

  60. Bersuker G, Zeitzoff P, Brown G and Huff H R 2004 Mater. Today 7 26

    CAS  Google Scholar 

  61. Tan H S, Cahyadi T, Wang Z B, Lohani A, Tsakadze Z, Zhang S et al 2008 IEEE Electron. Device Lett. 29 698

    CAS  Google Scholar 

  62. Lin Y J, Tsao H Y and Liu D S 2015 J. Mater. Sci. Mater. Electron. 26 2579

    CAS  Google Scholar 

  63. Koo J B, Ku C H, Lim S C, Kim S H and Lee J H 2007 Appl. Phys. Lett. 90 2005

    Google Scholar 

  64. Ali K, Kim C Y and Choi K H 2014 J. Mater. Sci. Mater. Electron. 25 1922

    CAS  Google Scholar 

  65. Yoon W J and Berger P R 2010 Org. Electron. Phys., Mater. Appl. 11 1719

    CAS  Google Scholar 

  66. Wei C Y, Kuo S H, Hung Y M, Huang W C, Adriyanto F and Wang Y H 2011 IEEE Electron. Device Lett. 32 90

    CAS  Google Scholar 

  67. He W, Xu W, Peng Q, Liu C, Zhou G, Wu S et al 2016 J. Phys. Chem. C 120 9949

    CAS  Google Scholar 

  68. Bartic C, Jansen H, Campitelli A and Borghs S 2002 Org. Electron. 3 65

    CAS  Google Scholar 

  69. Lu Y, Lee W H, Lee H S, Jang Y, Cho K, Lu Y et al 2009 Appl. Phys. Lett. 94 85

    Google Scholar 

  70. Yun Y, Pearson C and Petty M C 2009 J. Appl. Phys. 105 034508

    Google Scholar 

  71. Klauk H 2010 Chem. Soc. Rev. 39 2643

    CAS  Google Scholar 

  72. Veres J, Ogier S D, Leeming S W, Cupertino D C and Khaffaf S M 2003 Adv. Funct. Mater. 13 199

    CAS  Google Scholar 

  73. Yang S Y, Shin K and Park C E 2005 Adv. Funct. Mater. 15 1806

    CAS  Google Scholar 

  74. Jeong S, Kim D, Lee S, Park B K and Moon J 2006 Appl. Phys. Lett. 89 92101

    Google Scholar 

  75. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W and Weber W 2002 J. Appl. Phys. 92 5259

    CAS  Google Scholar 

  76. Kato Y, Iba S, Teramoto R, Sekitani T, Someya T, Kawaguchi H et al 2004 Appl. Phys. Lett. 84 3789

    CAS  Google Scholar 

  77. Choi J, Seong H, Pak K and Im S G 2016 J. Inf. Disp. 17 43

    CAS  Google Scholar 

  78. Ng T N, Daniel J H, Sambandan S, Arias A C, Chabinyc M L and Street R A 2008 J. Appl. Phys. 103 44506

    Google Scholar 

  79. Dibenedetto B S A, Facchetti A, Ratner M A, Marks T J, DiBenedetto S A, Facchetti A et al 2009 Adv. Mater. 21 1407

    CAS  Google Scholar 

  80. Novak M, Jager C M, Rumpel A, Kropp H, Peukert W, Clark T et al 2010 Org. Electron. Phys., Mater. Appl. 11 1476

    CAS  Google Scholar 

  81. Deman A L and Tardy J 2005 Org. Electron. Phys., Mater. Appl. 6 78

    CAS  Google Scholar 

  82. Deng L F, Lai P T, Chen W B, Xu J P, Liu Y R, Choi H W et al 2011 IEEE Electron. Device Lett. 32 93

    CAS  Google Scholar 

  83. Kim J M, Lee J W, Kim J K, Ju B K, Kim J S, Lee Y H et al 2004 Appl. Phys. Lett. 85 6368

    CAS  Google Scholar 

  84. Roh J, Lee C, Kwak J, Jung B J and Kim H, 2015 J. Korean Phys. Soc. 67 941

    CAS  Google Scholar 

  85. Pernstich K P, Haas S, Oberhoff D, Goldmann C, Gundlach D J, Batlogg B et al 2004 J. Appl. Phys. 96 6431

    CAS  Google Scholar 

  86. Yu S H, Cho J, Ha J U and Chung D S 2017 Org. Electron. 41 327

    Google Scholar 

  87. Ma H, Acton O, Ting G, Ka J W, Yip H, Tucker N et al 2008 Appl. Phys. Lett. 92 1

    Google Scholar 

  88. Acton O, Ii G T, Ma H, Hutchins D, Wang Y, Purushothaman B et al 2009 J. Mater. Chem. C 19 7929

    CAS  Google Scholar 

  89. Aghamohammadi M, Ro R, Zschieschang U, Ocal C, Boschker H, Weitz R T et al 2015 Appl. Mater. Interfaces 7 22775

    CAS  Google Scholar 

  90. Liu D, Xu X, Su Y, He Z, Xu J and Miao Q 2013 Angew. Chem. — Int. Ed. 52 6222

    CAS  Google Scholar 

  91. **no H, Yokota T, Matsuhisa N, Kaltenbrunner M, Tachibana Y and Someya T 2017 Org. Electron. Phys., Mater. Appl. 40 58

    CAS  Google Scholar 

  92. Salinas M, Jäger C M, Amin A Y, Dral P O, Meyer-friedrichsen T, Hirsch A et al 2012 J. Am. Chem. Soc. 134 12648

    CAS  Google Scholar 

  93. Seo J H, Kwon J H, Shin S I, Suh K S, Ju B K, Seo J H et al 2007 Semicond. Sci. Technol. 22 1039

  94. Wang Y, Acton O, Ting G, Weidner T, Ma H, Castner D G et al 2009 Appl. Phys. Lett. 95 073505

    Google Scholar 

  95. Park J H, Lee H S, Lee J, Lee K, Lee G, Yoon K H et al 2012 Phys. Chem. Chem. Phys. 14 14202

    CAS  Google Scholar 

  96. Fukuda K, Suzuki T, Kobayashi T, Kumaki D and Tokito S 2013 Phys. Status Solidi 210 839

    CAS  Google Scholar 

  97. Held M, Schießl S P, Miehler D, Gannott F and Zaumseil J 2015 Appl. Phys. Lett. 107 1

    Google Scholar 

  98. Sun Q J, Zhuang J, Yan Y, Zhou Y, Han S T, Zhou L et al 2016 Phys. Status Solidi. Appl. Mater. Sci. 213 79

    CAS  Google Scholar 

  99. Lee W H, Wang C C and Ho J C 2009 Thin Solid Films 517 5305

    CAS  Google Scholar 

  100. Kim Y J, Kim J, Kim Y S and Lee J K 2013 Org. Electron. Phys., Mater. Appl. 14 3406

    CAS  Google Scholar 

  101. Chen F C, Chu C W, He J, Yang Y and Lin J L 2004 Appl. Phys. Lett. 85 3295

    CAS  Google Scholar 

  102. Hou X, Ng S C, Zhang J and Chang J S 2015 Org. Electron. 17 247

    CAS  Google Scholar 

  103. Kim J H, Hwang B U, Kim D I, Kim J S, Seol Y G, Kim T W et al 2017 Electron. Mater. Lett. 13 214

    CAS  Google Scholar 

  104. Faraji S, Hashimoto T, Turner M L and Majewski L A 2015 Org. Electron. Phys., Mater. Appl. 17 178

    CAS  Google Scholar 

  105. Kim C H, Bae J H, Lee S D and Choi J S 2007 Mol. Cryst. Liq. Cryst. 471 147

    CAS  Google Scholar 

  106. Chen F C, Chuang C S, Lin Y S, Kung L J, Chen T H and Shieh H P D 2006 Org. Electron. Phys., Mater. Appl. 7 435

    CAS  Google Scholar 

  107. Kelley T W, Boardman L D, Dunbar T D, Muyres D V, Pellerite M J and Smith T P 2003 J. Phys. Chem. B 107 5877

    CAS  Google Scholar 

  108. McDowell M, Hill I G, McDermott J E, Bernasek S L and Schwartz J 2006 Appl. Phys. Lett. 88 7

    Google Scholar 

  109. Jedaa A, Burkhardt M, Zschieschang U, Klauk H, Habich D, Schmid G et al 2009 Org. Electron. Phys., Mater. Appl. 10 1442

    CAS  Google Scholar 

  110. Yuan G C, Xu Z, Gong C, Cai Q J and Lu Z S 2009 Appl. Phys. Lett. 94 1

    Google Scholar 

  111. Acton O, Ting G G, Shamberger P J, Ohuchi F S, Ma H and Jen A K Y 2010 ACS Appl. Mater. Interfaces 2 511

    CAS  Google Scholar 

  112. Kim J, Park C J, Yi G, Choi M and Park S K 2015 Materials 8 6926

    CAS  Google Scholar 

  113. Wang W, Shi X, Li X and ZhangY 2016 IEEE Electron Device Lett. 37 1332

  114. Shaari S, Naka S and Okada H 2016 J. Photopolym. Sci. Technol. 29 363

    CAS  Google Scholar 

  115. Shaari S, Naka S and Okada H 2017 Japaneese J. Appl. Phys. 56 1

    Google Scholar 

  116. Shin W C, Moon H, Yoo S, Li Y and Cho B J 2010 IEEE Electron Device Lett. 31 1308

    CAS  Google Scholar 

  117. Kim J, Kim J, Ahn B, Hassinen T, Jung Y and Ko S 2015 Curr. Appl. Phys. 15 1238

    Google Scholar 

  118. Yoo S, Kim Y H, Ka J, Kim Y S, Yi M H and Jang K 2015 Org. Electron. 23 213

    CAS  Google Scholar 

  119. Shaari S, Naka S and Okada H 2016 Proc. of 23rd international workshop on active-matrix flatpanel displays and devices p 160

  120. Lee D, Kim J, Cho H, Su M, Park E, Eung N et al 2017 Thin Solid Films 622 29

    CAS  Google Scholar 

  121. Maliakal A, Katz H, Cotts P M, Subramoney S and Mirau P 2005 J. Am. Chem. Soc. 127 14655

    CAS  Google Scholar 

  122. Sung J H, Park S J, Park J H, Choi H J and Choi J S 2006 Synth. Met. 156 861

    CAS  Google Scholar 

  123. Zirkl M, Haase A, Fian A, Schön H, Sommer C, Jakopic G et al 2007 Adv. Mater. 19 2241

    CAS  Google Scholar 

  124. Fian A, Haase A, Stadlober B, Jakopic G, Matsko N B, Grogger W et al 2008 Anal. Bioanal. Chem. 390 1455

    CAS  Google Scholar 

  125. Wang J J, Lee W H, Ho J C and Hu T S 2009 J. Mater. Sci. Mater. Electron. 20 355

    CAS  Google Scholar 

  126. Park J, Lee J W, Kim D W, Park B J, Choi H J and Choi J S 2009 Thin Solid Films 51 588

    Google Scholar 

  127. Huang L, Jia Z, Kymissis L and O’Brien S 2010 Adv. Funct. Mater. 20 554

    CAS  Google Scholar 

  128. Yang F Y, Hsu M Y, Hwang G W and Chang K J 2010 Org. Electron. Phys. Mater. Appl. 11 81

    CAS  Google Scholar 

  129. Navan R R, Prashanthi K, Shojaei Baghini M and Ramgopal Rao V 2012 Microelectron. Eng. 96 92

    CAS  Google Scholar 

  130. Beaulieu M R, Baral J K, Hendricks N R, Tang Y, Brisen A L and Watkins J J 2013 ACS Appl. Mater. Interfaces 5 13096

    CAS  Google Scholar 

  131. Yu Y Y, Liu C L, Chen Y C, Chiu Y C and Chen W C 2014 RSC Adv. 4 62132

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BABU RAVI TEJA KARRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

TEJA KARRI, B.R., GUPTA, N. Hybrid bilayer gate dielectric-based organic thin film transistors. Bull Mater Sci 42, 2 (2019). https://doi.org/10.1007/s12034-018-1689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-018-1689-9

Keywords

Navigation