Log in

Effects of hydrostatic pressure and temperature on the second-harmonic generation of spherical quantum dots with inversely quadratic Hellmann potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have theoretically investigated second-harmonic generation (SHG) of spherical quantum dots with inversely quadratic Hellmann potential under the influence of hydrostatic pressure and temperature in the reported work. The Schrödinger equation which from the definition is solved using Nikiforov–Uvarov (N–U) method, and then energy level and wave function are derived. The compact density matrix method and iterative method are used to calculate the nonlinear optical SHG coefficient. The numerical results show that under different constraint parameters, the resonance peak of SHG coefficient moves to high energy or low energy, that is, redshift or blueshift. In addition, the peak of SHG coefficient will increase or decrease with the change of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N Aghoutane, M El-Yadri, A El Aouami, E Feddi, F Dujardin, M El Haouari and H V Phuc Appl. Phys. A 125 1 (2019)

    Article  ADS  Google Scholar 

  2. J T Tomaino, A D Jameson, Y S Lee, J P Prineas, J T Steiner, M Kira and S W Koch Solid State Electron. 54 1125 (2010)

    Article  ADS  Google Scholar 

  3. Y Y Chen, X L Feng and C P Liu Phys. Rev. Lett. 117 023901 (2016)

    Article  ADS  Google Scholar 

  4. M Servatkhah, R Khordad and A Firoozi Eur. Phys. J. B 93 1 (2020)

    Article  Google Scholar 

  5. C J Zhang Phys. Lett. A 383 125983 (2019)

    Article  MathSciNet  Google Scholar 

  6. G Rezaei Curr. Appl. Phys. 11 176 (2011)

    Article  ADS  Google Scholar 

  7. Z H Zhang, Y S Shi and J H Yuan Commun. Theor. Phys. 74 065502 (2022)

    Article  ADS  Google Scholar 

  8. M Kria, M Farkous, V Prasad, F Dujardin, L M Pérez, D Laroze and E Feddi Curr. Appl. Phys. 25 1 (2021)

    Article  ADS  Google Scholar 

  9. S Panda, T Das and B K Panda Superlattice. Microst. 135 106238 (2019)

    Article  Google Scholar 

  10. S Pal, M Ghosh and C A Duque Philos. Mag. 99 2457 (2019)

    Article  ADS  Google Scholar 

  11. Y B Yu Appl. Mech. Mater. 389 1075 (2013)

    Article  Google Scholar 

  12. K Fellaoui Indian J. Phys. 93 1353 (2019)

    Article  ADS  Google Scholar 

  13. S Sakiroglu, D Gul Kilic, U Yesilgul, F Ungan, E Kasapoglu, H Sari and I Sokmen Phys. B 539 101 (2018)

    Article  ADS  Google Scholar 

  14. Q Zhao, S Aqiqi, J F You, M Kria and K X Guo Phys. E Low Dimens. Syst. Nanost. 115 113707 (2020)

    Article  Google Scholar 

  15. S X Mo, K X Guo, G H Liu, X B He, J Y Lan and Z P Zhou Thin Solid Films 710 138236 (2020)

    Article  ADS  Google Scholar 

  16. R Khordad Indian J. Phys. 86 513 (2012)

    Article  ADS  Google Scholar 

  17. L Stevanović Opt. Mater. 91 62 (2019)

    Article  ADS  Google Scholar 

  18. M Kria, M El-Yadri, N Aghoutane and L M Pérez J. Phys. 66 444 (2020)

    Google Scholar 

  19. X C Li, C B Ye, J Gao and B Wang Chin. Phys. B 29 087302 (2020)

    Article  ADS  Google Scholar 

  20. P Hashemi, M Servatkhah and R Pourmand Opt. Quant. Electron. 53 1 (2021)

    Article  Google Scholar 

  21. L C Zhang, X C Li, X G Liu and Z R Li Phys. B 618 413197 (2021)

    Article  Google Scholar 

  22. N D Hien, C A Duque, E Feddi, N V Hieu, H D Trien, L T Phuong and H V Phuc Thin Solid Films 682 10 (2019)

    Article  ADS  Google Scholar 

  23. B I Ita and A I Ikeuba J. At. Mol. Phys. 2013 1 (2013)

    Article  Google Scholar 

  24. L Máthé, C P Onyenegecha, A A Farcaş and L M Pioraş-Ţimbolmaş Phys. Lett. A 397 127262 (2021)

    Article  Google Scholar 

  25. B I Ita J. Theor. Phys. Cryptogr. 4 2322 (2013)

    Google Scholar 

  26. I B Okon and A D Antia Phys Sci. Int. J. 24 61 (2020)

    Article  Google Scholar 

  27. C Tezcan and R Sever Int. J. Theor. Phys. 48 337 (2009)

    Article  Google Scholar 

  28. R L Restrepo, E Kasapoglu, S Sakiroglu, F Ungan, A L Morales and C A Duque Infrared Phys. Tech. 85 147 (2017)

    Article  ADS  Google Scholar 

  29. C M Duque, M E Mora-Ramos and C A Duque J. Lumin. 138 53 (2013)

    Article  Google Scholar 

  30. H Bahramiyan Indian J. Phys. 94 789 (2020)

    Article  ADS  Google Scholar 

  31. L V Tung, P T Vinh, L Dinh and H V Phuc Int. J. Mod. Phys. B 32 1850162 (2018)

    Article  ADS  Google Scholar 

  32. U Yesilgul, H Sari, F Ungan, J C Martínez-Orozco, R L Restrepo, M E Mora-Ramos and I Sökmen Chem. Phys. 485 81 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Project supported by Support National Natural Science Foundation of China (Grant Nos. 52174161, 12174161, 51702003, 61775087, and 11674312) and Innovation Fund for Postgraduate in Anhui University of Science and Technology (No. 2022CX2132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuechao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Overview of Nikiforov–Uvarov (N–U) method

Appendix: Overview of Nikiforov–Uvarov (N–U) method

The N–U method is mainly used to solve particular forms of second-order differential equations. This Schrödinger equation conforms to the following format

$$ \psi^{\prime\prime}\left( z \right) + \left[ {E - V(z)} \right]\psi \left( z \right) = 0 $$
(33)

the above formula can be transformed into the following hypergeometric equation through coordinate transformation

$$ \psi^{\prime\prime}\left( s \right) + \frac{{\overline{\tau }\left( s \right)}}{\sigma \left( s \right)}\psi^{\prime}\left( s \right) + \frac{{\overline{\sigma }\left( s \right)}}{{\sigma^{2} \left( s \right)}}\psi \left( s \right) = 0 $$
(34)

where \(\sigma \left( s \right)\)and \(\overline{\sigma }\left( s \right)\)are second-degree polynomials, \(\overline{\tau }\left( s \right)\)is a first-degree polynomial, and \(\psi \left( s \right)\)can be written as

$$ \psi \left( s \right) = \varphi \left( s \right)\chi \left( s \right) $$
(35)

where \(\varphi \left( s \right)\)denotes the derivative of logarithm [22], whose form is

$$ \frac{{\varphi^{\prime}\left( s \right)}}{\varphi \left( s \right)} = \frac{\xi \left( s \right)}{{\sigma \left( s \right)}} $$
(36)

where \(\xi \left( s \right)\) represents first-order polynomials.

Simultaneous Eqs. (2) and (3), we can get the hypergeometric equation

$$ \sigma \left( s \right)\chi^{\prime\prime}\left( s \right) + \overline{\tau }\left( s \right)\chi^{\prime}\left( s \right) + \lambda \chi \left( s \right) = 0 $$
(37)

In Eq. (5), when the condition that n is a constant value is satisfied, we can gain hypergeometric-type functions according to the Rodrigue relation

$$ \chi_{n} \left( s \right) = \frac{{C_{n} }}{{\rho_{n} }}\frac{{{\text{d}}^{n} }}{{{\text{d}}s^{n} }}\left[ {\sigma^{n} \left( s \right)\rho_{n} \left( s \right)} \right] $$
(38)

among \(C_{n}\) is normalized constant, \(\rho_{n} \left( s \right)\) expresses weight function and must meet the following conditions

$$ \frac{d}{ds}\left[ {\sigma^{n} \left( s \right)\rho_{n} \left( s \right)} \right] = \tau \left( s \right)\rho \left( s \right) $$
(39)
$$ \tau \left( s \right) = \overline{\tau }\left( s \right) + 2\xi \left( s \right) $$
(40)

The parameter b and function \(\xi \left( s \right)\) have the following relationship

$$ \xi \left( s \right) = \frac{{\sigma^{\prime} - \overline{\tau }}}{2} \pm \sqrt {\left( {\frac{{\sigma^{\prime} - \overline{\tau }}}{2}} \right)^{2} - \overline{\sigma } + k\sigma } $$
(41)
$$ \lambda = k + \xi^{\prime}\left( s \right) $$
(42)

when the discriminant is zero, we can obtain a new eigenequation

$$ \lambda = \lambda_{n} = - n\frac{{{\text{d}}\tau }}{{{\text{d}}s}} - \frac{{n\left( {n - 1} \right)}}{2}\frac{{{\text{d}}^{2} \sigma }}{{{\text{d}}s^{2} }},\;n = 1,2, \ldots $$
(43)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Li, X., Duan, Y. et al. Effects of hydrostatic pressure and temperature on the second-harmonic generation of spherical quantum dots with inversely quadratic Hellmann potential. Indian J Phys 97, 1465–1471 (2023). https://doi.org/10.1007/s12648-022-02507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02507-9

Keywords

Navigation