Log in

The effect of rashba spin–orbit interaction on optical far-infrared transition of tuned quantum dot/ring systems

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present work, optical properties of tuned quantum dot/ring systems with considering the effect of Rashba spin–orbit interaction are theoretically investigated. To this end, we describe our system by using an appropriate model potential to obtain the energy levels and wave functions analytically. The system is excited by a monochromatic electromagnetic field and intersubband transitions for the electrons are considered. Then, analytical expressions for optical absorption coefficients and refractive index changes are used. The effect of quantum dot radius and the Rashba coupling constant on the optical properties have been investigated. The results show that: (i) The effect of Rashba spin–orbit interaction on the peak values of the refractive index changes is negligible. (ii) The total absorption coefficient is enhanced and shift toward higher energies with considering the effect of Rashba spin–orbit interaction. (iii) The impact rate of spin–orbit interaction on the optical properties relates to the quantum dot radius, depth of confining potential and the Rashba coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn, D., Chuang, S.L.: Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Elect. 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

  • Akbari, M., Rezaei, G., Khordad, R.: The Rashba and Dresselhaus spin-orbit interactions in a two-dimensional quantum pseudo-dot system. Superlatt. Microstruct. 101, 429–435 (2017)

    Article  ADS  Google Scholar 

  • Andrews, D.L., Lipson, R.H., Nann, T.: Comprehensive Nanoscience and Nanotecnology, Elsevier (2019)

    Google Scholar 

  • Attar, F., Khordad, R., Zarifi, A., Modabberasl, A.: Application of nonlocal modified couple stress to study of functionally graded piezoelectric plates. Phys. B Condens. Matter 600, 412623 (2021)

    Article  Google Scholar 

  • Bejan, D., Stan, C., Niculescu, E.C.: Optical properties of an elliptic quantum ring: Eccentricity and electric field effects. Opt. Mater. 78, 207–219 (2018)

    Article  ADS  Google Scholar 

  • Boyd, R.W.: Nonlinear Optics. Academic Press, New York (2003)

    Google Scholar 

  • Chakraborty, T., Manaselyan, A., Barseghyan, M., Laroze, D.: Controllable continuous evolution of electronic states in a single quantum ring. Phys. Rev. B 97, 041304(R) (2018)

    Article  ADS  Google Scholar 

  • Chen, T., **e, W., Liang, S.: Optical and electronic properties of a two-dimensional quantum dot with an impurity. J. Lumin. 139, 64–68 (2013)

    Article  Google Scholar 

  • De, M., Singh, V.K.: Wide range refractive index sensor using a birefringent optical fiber. Opt. Quant. Electron. 53, 198 (2021)

    Article  Google Scholar 

  • Elsaid, M.K., Shaer, A., Hjaz, E., Yahya, M.H.: Impurity effects on the magnetization and magnetic susceptibility of an electron confined in a quantum ring under the presence of an external magnetic field. Chin. J. Phys. 64, 9–17 (2020)

    Article  MathSciNet  Google Scholar 

  • Fomin, V.M.: Physics of Quantum Rings, Springer International Publishing (2018)

    Book  MATH  Google Scholar 

  • Ghanbari, A., Khordad, R.: Bound states and optical properties for Derjaguin-Landau-Verweij-Overbook potential. Opt. Quant. Electron. 53, 152 (2021)

    Article  Google Scholar 

  • Ghazaryan, A., Manaselyan, A., Chakraborty, T.: Signatures of Majorana fermions in an elliptical quantum ring. Phys. Rev. B 93, 245108 (2016)

    Article  ADS  Google Scholar 

  • Golovynski, S., Datsenko, O.I., Seravalli, L., Trevisi, G., Frigeri, P., Babichuk, I.S., Golovynska, I., Qu, J.: Interband photoconductivity of metamorphic InAs/InGaAs quantum dots in the 1.3–1.55-μm window. Nano Res. Lett. 13, 103 (2018)

    Article  Google Scholar 

  • Gong, M., Duan, K., Li, Ch. F., Magri, R., Narvaez, G.A., He, L.: Electronic structure of self-assembled InAsÕInP quantum dots: Comparison with self-assembled InAsÕGaAs quantum dots. Phys. Rev. B 77, 045326 (2008)

    Article  ADS  Google Scholar 

  • Jelen, C.L., Erdtmann, M., Kim, S., Razeghi, M.: Quantum dot intersubband photodetectors. In: Proc. SPIE 4288, Photodetectors: Materials and Devices VI (2001)

  • Jha, P.K., Kumar, M., Lahon, S., Gumber, S., Mohan, M.: Rashba spin orbit interaction effect on nonlinear optical properties of quantum dot with magnetic field. Superlatt. Microstruct. 65, 71–78 (2014)

    Article  ADS  Google Scholar 

  • Jia, C.S., Zhang, L.H., Wang, C.W.: Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  • Khordad, R.: Optical properties of quantum wires: Rashba effect and external magnetic field. J. Lumin. 134, 201–207 (2013)

    Article  Google Scholar 

  • Khordad, R.: Bound polaron in a quantum pseudodot under Rashba effect. Phys. e. 69, 249–252 (2015)

    Article  Google Scholar 

  • Khordad, R.: The effect of Rashba spin-orbit interaction on electronic and optical properties of a double ring-shaped quantum dot. Superlatt. Microstruct. 110, 146–154 (2017)

    Article  ADS  Google Scholar 

  • Khordad, R.: Optical properties of wedge-shaped quantum dots under Rashba spin–orbit interaction. Int. J. Mod. Phys. B 31, 1750055 (2017)

    Article  ADS  MATH  Google Scholar 

  • Khordad, R.: Simultaneous effects of electron-electron interactions, Rashba spin-orbit interaction and magnetic field on susceptibility of quantum dots. J. Magn. Magn. Mater. 449, 510–514 (2018)

    Article  ADS  Google Scholar 

  • Khordad, R., Kheiryzadeh Khaneghah, S.: Intersubband optical absorption coefficients and refractive index changes in a V-groove quantum wire. Phys. Stat. Sol. B 248, 243–249 (2011)

    Article  ADS  Google Scholar 

  • Khordad, R., Mirhosseini, B.: Optical properties of GaAs/Ga 1-xAlxAs ridge quantum wire: Third-harmonic generation. Opt. Commun. 285, 1233–1237 (2012)

    Article  ADS  Google Scholar 

  • Khordad, R., Rastegar Sedehi, H.R.: Magnetic susceptibility of graphene in non-commutative phase-space: Extensive and non-extensive entropy. Eur. Phys. J. Plus 134, 133 (2019)

    Article  Google Scholar 

  • Kim, B.W., Majerfeld, A.: Electronic and intersubband optical properties of ptype GaAs/AlGaAs superlattices for infrared photodetectors. J. Appl. Phys. 77, 4552–4563 (1995)

    Article  ADS  Google Scholar 

  • Kozin, V.K., Iorsh, I.V., Kibis, O.V., Shelykh, I.A.: Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling. Phys. Rev. B 97, 155434 (2018)

    Article  ADS  Google Scholar 

  • Kuhn, K.J., Lyengar, G.U., Yee, S.: Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells. J. Appl. Phys. 70, 5010–5017 (1991)

    Article  ADS  Google Scholar 

  • Li, X., Wu, Y., Steel, D., Gammon, D., Stievater, T.H., Katzer, D.S., Park, D., Piermarocchi, C., Sham, L.J.: An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003)

    Article  ADS  Google Scholar 

  • Li, G., Yang, N., Chu, W., Song, H., Zhu, J.L.: Magnetic quantum ring in two-dimensional topological insulators. Phys. Lett. A 383, 125865 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Lia, J.M., Tamborenea, P.I.: Narrow quantum rings with general Rashba and Dresselhaus spin-orbit interactions. Phys. E Low-dimensional Syst. Nanostruct. 126, 114419 (2021)

    Article  Google Scholar 

  • Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., Imamoglu, A.: A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  Google Scholar 

  • Neeleshwar, S., Chen, C.L., Tsai, C.B., Chen, Y.Y., Chen, C.C., Shyu, S.G., Seehra, M.S.: Size-dependent properties of CdSe quantum dots. Phys. Rev. B 71, 201307 (2005)

    Article  ADS  Google Scholar 

  • Pal, S., Ghosh, M., Duque, C.A.: Impurity related optical properties in tuned quantum dot/ring systems. Philos. Magaz. 99, 2457–2486 (2019)

    Article  ADS  Google Scholar 

  • Rahmani-Ivriq, N., Kordbacheh, A.A.: The effect of Rashba spin–orbit interaction on the spin-polarized transport of zigzag phosphorene nanoribbons. Phys. D: Appl. Phys. 53, 465302 (2020)

    Article  ADS  Google Scholar 

  • Rashba, E.I., Sheka, V.I.: Symmetry of energy bands in crystals of wurtzite type ii. Symmetry of bands with spin-orbit interaction included. Fiz. Tverd. Tela 2, 62–76 (1959)

    Google Scholar 

  • Rastegar Sedehi, H., Khordad, R.: Magnetocaloric effect, magnetic susceptibility and specific heat of tuned quantum dot/ring systems. Phys. E 134, 114886 (2021)

    Article  Google Scholar 

  • Rastegar Sedehi, H.R., Khordad, R., Bahramiyan, H.: Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: impurity effect. Opt. Quant. Electron. 53, 264 (2021)

    Article  Google Scholar 

  • Saini, P., Boda, A., Chatterjee, A.: Effect of Rashba and Dresselhaus spin-orbit interactions on a D0 impurity in a two-dimensional Gaussian GaAs quantum dot in the presence of an external magnetic field. J. Magn. Magn. Mater. 485, 407–412 (2019)

    Article  ADS  Google Scholar 

  • Santa, J.D.S., Garcia, D.F., Marin, J.H.: Entropy and electronic properties of an off-axis hydrogen-like impurity in non-uniform height quantum ribbon with structural and geometrical azimuthal potential barriers. Opt. Quant. Electron. 53, 176 (2021)

    Article  Google Scholar 

  • Srouji, R., Sakr, M.R.: Thermopower of a ballistic nanowire subjected to an in-plane magnetic field in the presence of Rashba and Dresselhaus interactions. Phys. E: Low-dimensional Syst. Nanostruct. 68, 210–214 (2015)

    Article  ADS  Google Scholar 

  • Sun, Y., Ma, X.F., Liu, X.Y., Cui, Y., Deng, J.P., **ao, Y., Li, Z.Q., Wang, Z.W.: Corrigendum: Effective velocities of polaron spin states in monolayer transition metal dichalcogenides. J. Phys. Condens. Matter 33, 235303 (2021)

    Article  ADS  Google Scholar 

  • Ünlü, S., Karabulut, İ., Safak, H.: Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E: Low-dimensional Syst. Nanostruct. 33, 319–324 (2006)

    Article  ADS  Google Scholar 

  • Vaseghi, B., Rezaei, G., Malian, M.: Energy levels and electron g-factor of spherical quantum dots with Rashba spin–orbit interaction. Phys. Lett. A 375, 2747–2753 (2011)

    Article  ADS  Google Scholar 

  • **e, W.: Linear and nonlinear optical properties of a hydrogenic donor in spherical quantum dots. Phys. B Condens. Matter 403, 4319–4322 (2008)

    Article  ADS  Google Scholar 

  • Yang, W., Chang, K.: Rashba spin splitting in biased semiconductor quantum wells. Phys. Rev. B 73(11), 113303 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Servatkhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Here, we will show the details of obtaining energy eigenvalues and eigenstates of the system. The Schrödinger equation is expressed by

$$H\phi =E\phi$$
(28)

where

$$H=-\frac{{\hslash }^{2}}{2{m}^{*}}\left(\frac{{\partial }^{2}}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial }{\partial r}+\frac{1}{{r}^{2}}\frac{{\partial }^{2}}{\partial {\theta }^{2}}\right)+\frac{1}{2}{m}^{*}\left({\omega }_{0}^{2}+\frac{{\omega }_{c}^{2}}{4}\right){r}^{2}+\frac{{V}_{0}{r}^{2}}{{R}_{0}^{2}}-{V}_{0}-i\hslash \frac{{\omega }_{c}}{2}\frac{\partial }{\partial \theta }+\frac{{\hslash }^{2}}{2{{m}^{*}}^{2}}\frac{\xi }{{r}^{2}}$$
(29)

Here \(\phi\) and \(E\) are the 2D eigenstate and its eigenvalue, respectively. We assume that

$$\phi \left(r,\theta \right)=f\left(r\right)\frac{{e}^{im\theta }}{\sqrt{2\pi }}$$
(30)

where \(m\) is the magnetic quantum number. Inserting Eq. (30) into Eq. (28) and remove the term of \(\frac{{e}^{im\theta }}{\sqrt{2\pi }}\) in both sides of the equation, we have

$$\left[-\frac{{\hslash }^{2}}{2{m}^{*}}\left(\frac{{\partial }^{2}}{\partial {r}^{2}}+\frac{1}{r}\frac{\partial }{\partial r}-\frac{{m}^{2}}{{r}^{2}}\right)+\frac{1}{2}{m}^{*}{\Omega }^{2}{r}^{2}-{V}_{0}+\frac{m{\omega }_{c}\hslash }{2}+\frac{{\hslash }^{2}}{2{{m}^{*}}^{2}}\frac{\xi }{{r}^{2}}\right]f\left(r\right)=Ef\left(r\right)$$
(31)

To solve above equation, the following relation has been employed

$$f\left(r\right)={r}^{-\frac{1}{2}}g\left(r\right)$$
(32)

Inserting above equation into Eq. (31), we obtain

$$\frac{{d}^{2}g(r)}{d{r}^{2}}+\left[\frac{2{m}^{*}\eta }{{\hslash }^{2}}-\frac{{m}^{{*}^{2}}{\Omega }^{2}{r}^{2}}{{\hslash }^{2}}-\frac{l(l+1)}{{r}^{2}}\right]g\left(r\right)=0$$
(33)

where

$$\eta =E+{V}_{0}-\frac{m\hslash {\omega }_{c}}{2}, l\left(l+1\right)={m}^{2}+\xi -\frac{1}{4}$$
(34)

Now, we use the following variables

$${r}^{2}=\frac{\hslash }{{m}^{*}\Omega }x, {l}_{m}=\sqrt{{m}^{2}+\frac{\xi }{2}}+\frac{1}{4}$$
(35)

Substituting Eq. (35) into Eq. (33), we have

$$\frac{{d}^{2}g(z)}{d{z}^{2}}+\frac{1}{2z}\frac{dg(z)}{dz}-\left[\frac{{l}_{m}\left({l}_{m}-\frac{1}{2}\right)}{{z}^{2}}+\frac{1}{4}-\frac{\eta }{2\hslash\Omega z}\right]g\left(z\right)=0$$
(36)

Inserting the following relation into Eq. (36),

$$g\left(z\right)={z}^{{l}_{m}}{e}^{-\frac{z}{2}}h\left(z\right)$$
(37)

We obtain the below equation

$$z\frac{{d}^{2}h(z)}{d{z}^{2}}+\left[\left(2{l}_{m}+\frac{1}{2}\right)-z\right]\frac{dh(z)}{dz}-\left({l}_{m}+\frac{1}{4}-\frac{\eta }{2\hslash\Omega }\right)h\left(z\right)=0$$
(38)

It is clear that above equation is the Kummer’s differential equation if

$$\left(2{l}_{m}+\frac{1}{2}\right)=b, \left({l}_{m}+\frac{1}{4}-\frac{\eta }{2\hslash\Omega }\right)=a$$
(39)

To make \(g\left(z\right)\) finite, we have \(a=-n\). Therefore, we can obtain the energy levels as

$${E}_{mn}=\left(2n+\sqrt{{m}^{2}+\upxi }+1 \right){\hslash \Upomega }+\frac{m{\hslash }{\omega }_{c}}{2}-{V}_{0}$$
(40)

and the wave function as

$$\phi \left(r,\theta \right)=N{r}^{\left(2{l}_{m}-\frac{1}{2}\right)}{e}^{-\frac{{r}^{2}}{2{\Omega }_{1}^{2}}}{L}_{n}^{\left(2{l}_{m}-\frac{1}{2}\right)}\left(\frac{{r}^{2}}{{\Omega }_{1}^{2}}\right){e}^{im\theta }$$
(41)

where \(N\) is the normalization constant and \({\Omega }_{1}=\sqrt{\frac{\hslash }{{m}^{*}\Omega }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, P., Servatkhah, M. & Pourmand, R. The effect of rashba spin–orbit interaction on optical far-infrared transition of tuned quantum dot/ring systems. Opt Quant Electron 53, 567 (2021). https://doi.org/10.1007/s11082-021-03173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03173-7

Keywords

Navigation