Log in

Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The pressure and temperature effects on the optical responses involving the \(1s-1p\) intersubband transition of an exciton in a spherical quantum dot are investigated. Calculations are performed in the framework of the effective mass approximation and the energies are obtained by using a Ritz variational method. Our approach is based on the Hylleraas formalism were the correlations between the electron and hole are taken into account. Temperature, pressure and the size effects on the linear and third nonlinear optical properties are analyzed. Our results show that the temperature and pressure provide important effects on linear and nonlinear parts of the absorption coefficient (AC) and the relative refractive index change (RI) associated to the \(1s-1p\) transition. We found that by increasing the temperature and pressure the AC and RI curves shift to lower and higher energies respectively. Calculations show also that the dot size affects considerably the AC and RI and their corresponding amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 28, 4717–4732 (2007)

    Article  Google Scholar 

  2. O. Salata, J. Nanobiotechnol. 2, 1–6 (2004)

    Article  Google Scholar 

  3. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin, Science 332, 77–81 (2011)

    Article  ADS  Google Scholar 

  4. P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91–100 (2011)

    Article  ADS  Google Scholar 

  5. P. Harrison, Quantum wells, wires and dots (Wiley, New York, 2006)

    Google Scholar 

  6. G. Schmid, Nanoparticles from theory to applications, second edn. (Wiley-VCH, Velag GmbH & Co KGaA, New York, 2010)

    Book  Google Scholar 

  7. I. Karabulut, S. Baskoutas, J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  8. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, C.A. Duque, J. Lumin. 134, 594–599 (2013)

    Article  Google Scholar 

  9. J.C. Martinez-Orozco, K.A. Rodriguez-Magdaleno, J.R. Suarez-Lopez, C.A. Duque, R.L. Restrepo, Superlattices Microstruct. 92, 166–173 (2016)

    Article  ADS  Google Scholar 

  10. I. Karabulut, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 131, 1502–1509 (2011)

    Article  Google Scholar 

  11. H. Yildirim, M. Tomak, Eur. Phys. J. B 50, 559–564 (2006)

    Article  ADS  Google Scholar 

  12. R. Kostić, D. Stojanović, J. Nanophotonics 5, 051810 (2011)

    Article  ADS  Google Scholar 

  13. S. Baskoutas, A.F. Terzis, Eur. Phys. J. B 69, 237–244 (2009)

    Article  ADS  Google Scholar 

  14. W. **e, Phys. B 405, 3436–3440 (2010)

    Article  ADS  Google Scholar 

  15. E.C. Niculescu, M. Cristea, J. Lumin. 135, 120–127 (2013)

    Article  Google Scholar 

  16. M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroum, F. Dujardin, Opt. Commun. 383, 231–237 (2017)

    Article  ADS  Google Scholar 

  17. I. Mal, J. Jayarubi, S. Das, A.S. Sharma, A.J. Peter, D.P. Samajdar, Phys. Status Solidi B (2018). https://doi.org/10.1002/pssb.201800395

    Article  Google Scholar 

  18. E. Owji, A. Keshavarz, H. Mokhtari, Superlattices Microstruct. 98, 276–282 (2016)

    Article  ADS  Google Scholar 

  19. E. Aksahin, V. Ustoglu Unal, M. Tomak, Phys. E 74, 258–263 (2015)

    Article  Google Scholar 

  20. E. Hanamura, Phys. Rev. B 37, 1273–1279 (1988)

    Article  ADS  Google Scholar 

  21. L. Lu, W. **e, Z. Shu, Phys. B 406, 3735–3740 (2011)

    Article  ADS  Google Scholar 

  22. Z. Zeng, G. Gorgolis, C.S. Garoufalis, S. Baskoutas, Sci. Adv. Mater. 6, 1–6 (2014)

    Article  Google Scholar 

  23. S.Y. Lopez, N. Porras-Montenegro, C.A. Duque, Phys. Status Solidi (b) 246, 630–634 (2009)

    Article  ADS  Google Scholar 

  24. C.A. Duque, S.Y. Lopez, M.E. Mora-Ramos, Phys. Status Solidi (b) 244, 1964–1970 (2007)

    Article  ADS  Google Scholar 

  25. P.Y. Yu, M. Cordona, Fundamentals of semiconductors (Springer, Berlin, 1998)

    Google Scholar 

  26. F.J. Culchac, N. Porras-Montenegro, A. Latge, J. Appl. Phys. 105, 094324 (2009)

    Article  ADS  Google Scholar 

  27. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, C.A. Duque, J. Lumin. 134, 594–599 (2013)

    Article  Google Scholar 

  28. M.G. Barseghyan, M.E. Mora-Ramos, C.A. Duque, Eur. Phys. J. B 84, 265–271 (2011)

    Article  ADS  Google Scholar 

  29. F. Dujardin, E. Feddi, A. Oukerroum, J. Bosch Bailach, J. Martinez-Pastor, E. Assaid, J. Appl. Phys. 113, 064314 (2013)

    Article  ADS  Google Scholar 

  30. E. Feddi, A. Zouitine, A. Oukerroum, F. Dujardin, E. Assaid, M. Zazoui, J. Appl. Phys. 117, 064309 (2015)

    Article  ADS  Google Scholar 

  31. F. Dujardin, E. Feddi, E. Assaid, A. Oukerroum, Eur. Phys. J. B 74, 507–516 (2010)

    Article  ADS  Google Scholar 

  32. J.V. Atanasoff, Phys. Rev. 36, 1232–1242 (1930)

    Article  ADS  Google Scholar 

  33. M. Abramowitz, I.A. Stegun (eds.), Handbook of mathematical functions (Dover, New York, 1972)

    MATH  Google Scholar 

  34. M.R.K. Vahdani, G. Rezaei, Phys. Lett. A 373, 3079–3084 (2009)

    Article  ADS  Google Scholar 

  35. A.R. Jafari, Phys. B 456, 72–77 (2015)

    Article  ADS  Google Scholar 

  36. J. Abraham, Hudson Mark, A. John Peter, J. Semicond. 33, 092001 (2012)

    Article  Google Scholar 

  37. A.John Peter, Phys. E 28, 225–229 (2005)

    Article  Google Scholar 

  38. H. El Ghazi, A. Jorio, I. Zorkani, Opt. Commun. 331, 73–76 (2014)

    Article  ADS  Google Scholar 

  39. S.J. Liang, W.F. **e, Eur. Phys. J. B 80, 79–84 (2011)

    Article  ADS  Google Scholar 

  40. R. Khordad, Phys. B 407, 1128–1133 (2012)

    Article  ADS  Google Scholar 

  41. G. Staszczak, I. Gorczyca, T. Suski, X.Q. Wang, N.E. Christensen, A. Svane, E. Dimakis, T.D. Moustakas, J. Appl. Phys. 113, 123101 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. A. Duque acknowledges the support by Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sostenibilidad de la Universidad de Antioquia and projects “Efectos de capas delta dopadas en pozos cuánticos como fotodetectores en el infrarrojo” and “Efectos ópticos intersubbanda, no lineales de segundo orden y dispersión Raman, en sistemas asimétricos de pozos cuánticos acoplados”), and Facultad de Ciencias Exactas y Naturales-Universidad de Antioquia (CAD-exclusive dedication project 2018–2019). This work used resources of the Centro Nacional de Processamento de Alto Desempenho em São Paulo (CENAPAD-SP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dujardin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghoutane, N., El-Yadri, M., El Aouami, A. et al. Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Appl. Phys. A 125, 17 (2019). https://doi.org/10.1007/s00339-018-2306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2306-x

Navigation