Log in

Effect of position-dependent effective mass on linear and nonlinear optical properties in a quantum dot

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the effect of constant effective mass and position-dependent effective mass on the optical properties of a spherical quantum dot has been studied. For this purpose, the intersubband optical absorption coefficient and the refractive index changes are obtained using both a constant effective mass and position-dependent effective mass. According to the results obtained from the present work, we find that spatially varying electron effective mass plays an important role in obtaining the intersubband optical absorption coefficients and refractive index changes in the finite and infinite quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R Khordad, A Gharaati and M Haghparast Curr. Appl. Phys.. 10 199 (2010)

    Article  ADS  Google Scholar 

  2. R Khordad Physica E 41 543 (2009)

    Article  ADS  Google Scholar 

  3. R Khordad and A R Bijanzadeh Mod. Phys. Lett. B 23 3677 (2009)

    Article  ADS  MATH  Google Scholar 

  4. S Mitra, A Mandal, S Banerjee, A Dutta, S Bhattacharya, A Bose and D Chakravorty Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  5. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  Google Scholar 

  6. S Tekerek, A Kudret and U Alver Indian J. Phys. 85 1469 (2011)

    Article  ADS  Google Scholar 

  7. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

    Article  ADS  Google Scholar 

  8. S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010)

    Article  ADS  Google Scholar 

  9. A U Ubale and A N Bargal Indian J. Phys. 84 1497 (2010)

    Article  ADS  Google Scholar 

  10. D Kalhor, R Zahiri, S A Ketabi and A Ebrahimzad Indian J. Phys. 84 539 (2010)

    Article  ADS  Google Scholar 

  11. J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)

    Article  Google Scholar 

  12. J Bhadra and D Sarkar Indian J. Phys. 84 1321 (2010)

    Article  ADS  Google Scholar 

  13. S Devi and M Srivastva Indian J. Phys. 84 1561 (2010)

    Article  ADS  Google Scholar 

  14. D Bimberg, M Grundman and N Ledentsov Quantum Dot Heterostructures (New York: Wiley) (1999)

    Google Scholar 

  15. A D Yoffe Adv. Phys. 42 173 (1993)

    Article  ADS  Google Scholar 

  16. R C Ashoori, H L Stromer, J S Weiner, L N Pfeiffer, K W Baldwin and K W West Physica B 189 117 (1993)

    Article  ADS  Google Scholar 

  17. G H Wang and K X Guo Physica B 315 619 (2002)

    Article  Google Scholar 

  18. M K Gurnick and T A DeTemple IEEE J. Quantum Electron. 19 791 (1983)

    Article  ADS  Google Scholar 

  19. G H Wang and K X Guo J. Phys. Condens. Matter 13 8197 (2001)

    Article  ADS  Google Scholar 

  20. Al L Efros and A L Efros Sov. Phys. Semicond.. 16 772 (1982)

    Google Scholar 

  21. A D Andreev and A A Lipovskii Semiconductors. 33 1450 (1999)

    Google Scholar 

  22. G H Wang, Q Guo, and K X Guo Chin. J. Phys. 41 296 (2003)

    Google Scholar 

  23. L C Weat and S L Eglash Appl. Phys. Lett. 46 1156 (1983)

    ADS  Google Scholar 

  24. B F Levine, R J Malik, J Walker, K K Choi, C G Bethea, D A Kleinman and J M Vandenberg Appl. Phys. Lett. 50 685 (1987)

    Article  Google Scholar 

  25. F Peeters Phys. Rev. B 42 1486 (1990)

    Article  ADS  Google Scholar 

  26. A L Morales, N Raigoza and C A Duque Brazil. J. Phys. 36 862 (2006)

    Article  ADS  Google Scholar 

  27. N Raigoza, A L Morales and C A Duque Physica B 363 262 (2005)

    Article  ADS  Google Scholar 

  28. R Khordad Physica B 406 3911 (2011)

    Article  ADS  Google Scholar 

  29. A J Peter and K Navaneethakrishnan Physica E 40 2747 (2008)

    Article  ADS  Google Scholar 

  30. S Rajashabala and K Navaneethakrishnan Brazil. J. Phys. 37 1134 (2007)

    Article  ADS  Google Scholar 

  31. S Rajashabala and K Navaneethakrishnan Mod. Phys. Lett. B 24 1529 (2006)

    Article  ADS  Google Scholar 

  32. Y X Li, J J Liu and X J Kong J. Appl. Phys. 88 2588 (2000)

    Article  ADS  Google Scholar 

  33. X H Qi, X J Kong and J J Liu Phys. Rev. B 58 10578 (1998)

    Article  ADS  Google Scholar 

  34. R Khordad Physica E 42 1503 (2010)

    Google Scholar 

  35. S Ünlü, I Karabulut and H Safak Physica E 33 319 (2006)

    Article  ADS  Google Scholar 

  36. D Ahn and S L Chuang IEEE J. Quantum Electron. 23 2196 (1987)

    Article  ADS  Google Scholar 

  37. K J Kuhn, G U Lyengar and S Yee J. Appl. Phys. 70 5010 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khordad, R. Effect of position-dependent effective mass on linear and nonlinear optical properties in a quantum dot. Indian J Phys 86, 513–519 (2012). https://doi.org/10.1007/s12648-012-0100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0100-8

Keywords

PACS Nos.

Navigation