Log in

Genetic dissection on wheat flour quality traits in two related populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Improvement of protein and starch quality is an important breeding objective for various wheat-based end products. The objectives of this study were to identify quantitative trait loci (QTLs) for flour protein content, wet gluten content, residue gluten content, gluten index, sedimentation volume, and rapid viscosity analysis parameters using two map** populations. A total of 56 and 77 additive QTLs were detected in the NG population (derived from Gaocheng 8901 and Nuomai 1) and the SG population (derived from Shannong 01-35 and Gaocheng 9411), respectively. Of these QTLs, 20 additive QTLs from NG and 34 additive QTLs from SG accounted for more than 10 % of the phenotypic variance. All of the QTLs were distributed on 19 wheat chromosomes. At least 13 QTLs were detected in both environments in the two populations. Six pairwise common QTLs were found in the two populations. This study identified eight QTLs clusters (the number of QTLs ≥2) from NG and four QTLs clusters from SG. There was an important location flanking markers Glu-D1 and wPt3743 on chromosome 1D, which showed that they are pleiotropic or co-located QTLs. Most of the QTLs had higher phenotypic variation (>10 %). This study will facilitate the generation of improved wheat varieties with good quality via molecular-marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

QTLs:

Quantitative trait loci

FPR:

Flour protein content

WGC:

Wet gluten content

RGC:

Residue gluten content

GI:

Gluten index

SV:

Sedimentation volume

RILs:

Recombinant inbred lines

NG:

The population from crossing Gaocheng 8901 and Nuomai 1

SG:

The population from crossing Shannong 01-35 and Gaocheng 9411

RVA:

Rapid viscosity analysis

PV:

Peak viscosity

TV:

Trough viscosity

BD:

Breakdown

FV:

Final viscosity

SB:

Setback

PT:

Peak time

PTE:

Pasting temperature

References

  • Batey IL, Hayden MJ, Cai S, Sharp PJ, Cornish GB, Morell MK, Appels R (2001) Genetic map** of commercially significant starch characteristics in wheat crosses. Aust J Agri Res 52:1287–1296

    Article  CAS  Google Scholar 

  • Blanco A, Bellomo M, Lotti C, Maniglio T, Pasqualone A, Simeone R, Troccoli A, Fonzo ND (1998) Genetic map** of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breed 117:413–417

    Article  Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTL for grain protein content in duru wheat. Theor Appl Genet 112:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Branlard G, Dardever R, Saccomano F, F Lagoutte, Gourdon J (2001) Genetics diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59–67

    Article  CAS  Google Scholar 

  • Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluaion of a high protein QTL from Triticum turgidum L.var. dicoccoides in an adapted durum wheat background. Crop Sci 41:295–301

    Article  CAS  Google Scholar 

  • Cui F, Li J, Ding AM, Zhao CH, Li XF, Feng DS, Wang XQ, Wang L, Wang HG (2012) QTL detection of internode length and its component index in wheat using two related RIL populations. Cereal Res Commun 40:373–384

    Article  Google Scholar 

  • Fan Y, Sun H, Zhao J, Ma Y, Li R, Li S (2009) QTL map** for quality traits of northern-style hand-made Chinese steamed bread. J Cereal Sci 49:225–229

    Article  CAS  Google Scholar 

  • Groos C, Bervas E, Chanliaud E, Charmet G (2007) Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population. Theor Appl Genet 115:313–323

    Article  CAS  PubMed  Google Scholar 

  • Gupta RB, Paul JG, Cornish GB, Palmer GA, Bekes F, Rathjen AJ (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1, of common wheat. I. Its additive and interation effects on dough properties. J Cereal Sci 19:9–17

    Article  CAS  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Kulwal P, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK (2005) Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics 5:254–259

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL map** for yield and yield contributing traits in two map** populations of bread wheat. Mol Breed 19:163–177

    Article  Google Scholar 

  • Kunert A, Naz AA, Oliver D, Pillen K, Léon J (2007) AB-QTL analysis in winter wheat: i. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor Appli Genet 115:683–695

    Article  CAS  Google Scholar 

  • Li H, Li Z, Wang J (2008) Inclusive composite interval map** (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor App. Genet 116:243–260

    Article  Google Scholar 

  • Li Y, Song Y, Zhou R, Branlard G, Jia J (2009) Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed 128:235–243

    Article  Google Scholar 

  • Li J, Cui F, Ding A, Zhao C, Wang X, Wang L, Bao Y, Qi X, Li X, Gao J, Feng D, Wang H (2012a) QTL detection of seven quality traits in wheat using two related recombinant inbred line populations. Euphytica 183:207–226

    Article  Google Scholar 

  • Li WF, Liu B, Peng T, Yuan QQ, Han SX, Tian JC (2012b) Detection of QTL for kernel weight, grain size, and grain hardness in wheat using DH and immortalized F2 population. Sci Agric Sin 45:3453–3462

    CAS  Google Scholar 

  • Li Y, Zhou R, Wang J, Liao X, Branlard G, Jia J (2012c) Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat. Mol Breed 29:627–643

    Article  Google Scholar 

  • Ma W, Sutherland MW, Kammholz S, Banks P, Brennan P, Bovill W, Daggard G (2007a) Wheat flour protein content and water absorption analysis in a doubled haploid population. J Cereal Sci 45:302–308

    Article  CAS  Google Scholar 

  • Ma ZQ, Zhao DM, Zhang CQ, Zhang ZZ, Xue SL, Lin F, Kong ZX, Tian DG, Luo QY (2007b) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mo Gen Genomics 277:31–42

    Article  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross L4452 x AC domain. Plant Breed 125:565–575

    Article  CAS  Google Scholar 

  • McIntosh RA, Hart GE, Gale MD (1994) Catalogue of gene symbols for wheat. Wheat Inf Serv 79:47–56

  • Nelson JC, Andreescu C, Breseghello F, Finney PL, Gualberto DG, Bergman CJ, Pena RJ, Perretant MR, Leroy P, Qualset CO, Sorrells ME (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149:145–159

    Article  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Rao VS (2009) Molecular map** of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp durum). J Cereal Sci 49:378–386

    Article  CAS  Google Scholar 

  • Payne PI, Lawrence GJ (1983) Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, Glu-D1, which code for high molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11:29–35

    Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theo. Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Shi CL, Zheng FF, Chen JS, Han SX, Wang YR, Tian JC (2012) Construction of genetic map and analysis of QTLs for grain weight using a RIL population derived from shannong 01-35 × Gaocheng 9411. Acta Agron Sinica 38:1369–1377

    Article  CAS  Google Scholar 

  • Sun HY, Lu JH, FanY D, Zhao Y, Kong F, Li RJ, Wang HG, Li SS (2008) Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Prog Nat Sci 18:825–831

    Article  CAS  Google Scholar 

  • Tsilo TJ, Ohm JB, Hareland GA, Chao S, Anderson JA (2011) Quantitative trait loci influencing endosperm proteinsand end-use quality traits of hard red spring wheat breeding lines. Czech J Genet Plant Breed 47:S190–S195

    Google Scholar 

  • Turner AS, Bradburne RP, Fish L, Snap JW (2004) New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40:51–60

    Article  CAS  Google Scholar 

  • Vales MI, Schon CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2009) Inclusive composite interval map** of quantitative trait genes. Acta Agron Sinica 35:239–245

    Article  CAS  Google Scholar 

  • Wang J, Li H, Wan X, Pfeiffer W, Crouch J, Wan J (2007) Application of identified QTL-marker associations in rice quality improvement through a design breeding approach. Theor Appl Genet 115:87–100

    Article  PubMed  Google Scholar 

  • Wu P, Liu B, Chen J, Sun C, Tian J (2011) QTL analysis of textural property traits for Chinese northern-style steamed bread. Euphytica 179:265–276

    Article  Google Scholar 

  • Zhang Y, Wu Y, ** for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 165:435–444

    Article  CAS  Google Scholar 

  • Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL map** in F2 populations. Theor Appl Genet 121:1071–1082

    Article  PubMed  Google Scholar 

  • Zhang C, Dong C, Ma J, Yan G, Liu C, Li G (2011a) Inheritance and QTL analysis of dough rheological parameters in wheat. Front Agric China 5:15–21

    Article  CAS  Google Scholar 

  • Zhang Y, Tang J, Zhang Y, Yan J, ** for quantities of protein fractions in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:971–987

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Chen M, Ma Y, Li R, Ren Y, Sun Q, Li S (2009a) QTL map** for quality traits of chinese dry noodle. Agric Sci China 8:394–400

    Article  Google Scholar 

  • Zhao L, Liu B, Zhang KP, Tian JC, Deng ZY (2009b) Detection of QTLs with additive effects, epistatic effects, and QTL × environment interactions for zeleny sedimentation value using a doubled haploid population in cultivated wheat. Agric Sci China 8:1039–1045

    Article  CAS  Google Scholar 

  • Zhao L, Zhang KP, Liu B, Deng ZY, Qu HL, Tian JC (2010) A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325–335

    Article  CAS  Google Scholar 

  • Zheng F, Deng Z, Shi C, Zhang X, Tian J (2013) QTL map** for dough mixing characteristics in a recombinant inbred population derived from a waxy × strong gluten wheat (Triticum aestivum L.). J Integr Agri 12(6):951–961

    Article  Google Scholar 

  • Zou F, Gelfond JAL, Airey DC, Lu L, Manly KF, Williams RW, Hreadgill DW (2005) Quantitative trait locus analysis using recombinant inbred intercross (RIX): theoretical and empirical considerations. Genetics 170:1299–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by the Natural Science Foundation of China (No. 31301315 and 31171554), the National Natural Science Foundation of Shandong Province, China (No. ZR2013CM004) and the State Key Laboratory of Crop Biology Foundation (2013KF06), and the Shandong Provincial Agriculture Liangzhong Project Foundation of China (Lu Nong Liang Zhong NO.7 [2012], [2013] and [2014]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Tian, J., Chen, F. et al. Genetic dissection on wheat flour quality traits in two related populations. Euphytica 203, 221–235 (2015). https://doi.org/10.1007/s10681-014-1318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1318-7

Keywords

Navigation