Log in

Physical properties, magnetic measurements, dielectric relaxation, and complex impedance studies of cobalt-doped zinc ferrite nanoparticles

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Pure and cobalt-doped zinc nanoferrites (Zn1−xCoxFe2O4, x = 0.00, 0.03, 0.06, 0.09) have been successfully prepared by cost-effective co-precipitation method. The formation of single spinel ferrites, purity, structure, and cation distribution of the material was determined by the X-ray diffraction method at room temperature. The phase formation, elemental composition and surface morphology were confirmed from the FTIR spectroscopy and SEM. The significant difference between the theoretical and experimental values of magnetic moments recommends that the magnetic order of the existing system is Yafet–Kittle (Y–K) type magnetic order. The complex impedance spectroscopy was performed in the range of frequency from 100 Hz to 2 MHz at various temperature ranges from 300 to 570 K with the step of 30 K. The experimental data are fitted to equivalent circuits to obtain grain and grain boundaries capacitance and resistance. The alternating current (a.c) and direct current (d.c) conductivities are estimated from measured data of the dielectric parameters. The application of plots of Jonscher’s power law showed the correlation barrier hop** (CBH) process can explain the conduction phenomenon in Zn1−xCoxFe2O4 nanoferrites system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agrawal S, Parveen A, Azam A (2016) Structural, electrical, and optomagnetic tweaking of Zn doped CoFe2−xZnxO4−δ nanoparticles. J Magn Magn Mater 414:144–152

    Article  CAS  Google Scholar 

  • Alarifi A, Deraz N, Shaban S (2009) Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J Alloy Compd 486(1–2):501–506

    Article  CAS  Google Scholar 

  • Ali H, Karim S, Rafiq M, Maaz K, Ur Rahman A, Nisar A et al (2014) Electrical conduction mechanism in ZnS nanoparticles. J Alloys Compd 612:64–68

    Article  CAS  Google Scholar 

  • Ali MB, El Maalam K, El Moussaoui H, Mounkachi O, Hamedoun M, Masrour R et al (2016) Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J Magn Magn Mater 398:20–25

    Article  CAS  Google Scholar 

  • Ali M, Hadi M, Hossain M, Naqib S, Islam A (2017) Theoretical investigation of structural, elastic, and electronic properties of ternary boride MoAlB. Physica Status Sol (b) 254(7):1700010

    Article  CAS  Google Scholar 

  • Alvarez G, Montiel H, Barron J, Gutierrez M, Zamorano R (2010) Yafet–Kittel-type magnetic ordering in Ni0.35Zn0.65Fe2O4 ferrite detected by magnetosensitive microwave absorption measurements. J Magn Magn Mater 322(3):348–352

    Article  CAS  Google Scholar 

  • Amir M, Gungunes H, Slimani Y, Tashkandi N, El Sayed H, Aldakheel F et al (2019) Mössbauer studies and magnetic properties of cubic CuFe2O4 nanoparticles. J Supercond Novel Magn 32(3):557–564

    Article  CAS  Google Scholar 

  • Atif M, Nadeem M (2014) Sol–gel synthesis of nanocrystalline Zn1–xNixFe2O4 ceramics and its structural, magnetic and dielectric properties. J Sol-Gel Sci Technol 72(3):615–626

    Article  CAS  Google Scholar 

  • Atif M, Hasanain S, Nadeem M (2006) Magnetization of sol–gel prepared zinc ferrite nanoparticles: effects of inversion and particle size. Solid State Commun 138(8):416–421

    Article  CAS  Google Scholar 

  • Atif M, Nadeem M, Siddique M (2015) Cation distribution and enhanced surface effects on the temperature-dependent magnetization of as-prepared NiFe2O4 nanoparticles. Appl Phys A 120(2):571–578

    Article  CAS  Google Scholar 

  • Avazpour L, Shokrollahi H, Toroghinejad M, Khajeh MZ (2016) Effect of rare earth substitution on magnetic and structural properties of Co1−xRExFe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J Alloy Compd 662:441–447

    Article  CAS  Google Scholar 

  • Azhagushanmugam S, Suriyanarayanan N, Jayaprakash R (2014) Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: correlation with annealing temperature and particle size. Mater Sci Semicond Process 21:33–37

    Article  CAS  Google Scholar 

  • Behera C, Choudhary R, Das PR (2015) Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite. J Mater Sci Mater Electron 26(4):2343–2356

    Article  CAS  Google Scholar 

  • Bharathi KK, Markandeyulu G, Ramana C (2011) Impedance spectroscopic characterization of Sm and Ho doped Ni ferrites. J Electrochem Soc 158(3):G71

    Article  CAS  Google Scholar 

  • Bouhadouza N, Rais A, Kaoua S, Moreau M, Taibi K, Addou A (2015) Structural and vibrational studies of NiAlxFe2−xO4 ferrites (0 ≤ x ≤ 1). Ceram Int 41(9):11687–11692

    Article  CAS  Google Scholar 

  • Chaudhari PR, Gaikwad V, Acharya S (2015) Role of mode of heating on the synthesis of nanocrystalline zinc ferrite. Appl Nanosci 5(6):711–717

    Article  CAS  Google Scholar 

  • Chauhan L, Shukla A, Sreenivas K (2015) Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel auto-combustion. Ceram Int 41(7):8341–8351

    Article  CAS  Google Scholar 

  • Costa M, Pires G Jr, Terezo A, Graca M, Sombra A (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J Appl Phys 110(3):034107

    Article  CAS  Google Scholar 

  • Dar MA, Batoo KM, Verma V, Siddiqui W, Kotnala R (2010) Synthesis and characterization of nano-sized pure and Al-doped lithium ferrite having high value of dielectric constant. J Alloy Compd 493(1–2):553–560

    Article  CAS  Google Scholar 

  • Das P, Behera S, Padhee R, Nayak P, Choudhary R (2012) Dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics. J Adv Ceram 1(3):232–240

    Article  CAS  Google Scholar 

  • Deraz N, Alarifi A (2012) Fabrication and characterization of pure and doped Zn/Fe nanocomposites. Int J Electrochem Sci 7:3809–3816

    CAS  Google Scholar 

  • Faraz A, Saqib M, Ahmad NM, Maqsood A, Usman M, Mumtaz A et al (2012) Synthesis, structural, and magnetic characterization of Mn1–xNixFe2O4 spinel nanoferrites. J Supercond Novel Magn 25(1):91–100

    Article  CAS  Google Scholar 

  • Fareed S, Jamil A, Afsar F, Sher F, Li C, Xu X et al (2019) Selective oxygen sensor prepared using Ni-doped zinc ferrite nanoparticles. J Electron Mater 48(9):5677–5685

    Article  CAS  Google Scholar 

  • Ghodake U, Chaudhari N, Kambale R, Patil J, Suryavanshi S (2016) Effect of Mn2+ substitution on structural, magnetic, electric and dielectric properties of Mg–Zn ferrites. J Magn Magn Mater 407:60–68

    Article  CAS  Google Scholar 

  • Gopalan EV, Malini K, Saravanan S, Kumar DS, Yoshida Y, Anantharaman M (2008) Evidence for polaron conduction in nanostructured manganese ferrite. J Phys D Appl Phys 41(18):185005

    Article  CAS  Google Scholar 

  • Gul I, Pervaiz E (2012) Comparative study of NiFe2−xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater Res Bull 47(6):1353–1361

    Article  CAS  Google Scholar 

  • Hamdaoui N, Azizian-Kalandaragh Y, Khlifi M, Beji L (2019) Structural, magnetic and dielectric properties of Ni0.6Mg0.4Fe2O4 ferromagnetic ferrite prepared by sol gel method. Ceram Int 45(13):16458–16465

    Article  CAS  Google Scholar 

  • Hanini A, Lartigue L, Gavard J, Kacem K, Wilhelm C, Gazeau F et al (2016) Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J Magn Magn Mater 416:315–320

    Article  CAS  Google Scholar 

  • Hashhash A, Kaiser M (2016) Influence of ce-substitution on structural, magnetic and electrical properties of cobalt ferrite nanoparticles. J Electron Mater 45(1):462–472

    Article  CAS  Google Scholar 

  • Hirosawa F, Iwasaki T, Watano S (2017) Synthesis and magnetic induction heating properties of Gd-substituted Mg–Zn ferrite nanoparticles. Appl Nanosci 7(5):209–214

    Article  CAS  Google Scholar 

  • Hochepied J, Pileni M (2001) Ferromagnetic resonance of nonstoichiometric zinc ferrite and cobalt-doped zinc ferrite nanoparticles. J Magn Magn Mater 231(1):45–52

    Article  CAS  Google Scholar 

  • Iftikhar S, Warsi MF, Haider S, Musaddiq S, Shakir I, Shahid M (2019) The impact of carbon nanotubes on the optical, electrical, and magnetic parameters of Ni2+ and Co2+ based spinel ferrites. Ceram Int 45(17):21150–21161

    Article  CAS  Google Scholar 

  • Irfan M, Niaz N, Ali I, Nasir S, Shakoor A, Aziz A et al (2015) Dielectric behavior and magnetic properties of Mn-substituted Ni–Zn ferrites. J Electron Mater 44(7):2369–2377

    Article  CAS  Google Scholar 

  • Islam M, Aen F, Niazi SB, Khan MA, Ishaque M, Abbas T et al (2008) Electrical transport properties of CoZn ferrite–SiO2 composites prepared by co-precipitation technique. Mater Chem Phys 109(2–3):482–487

    Article  CAS  Google Scholar 

  • Jahan N, Uddin M, Khan M, Chowdhury F-U-Z, Hasan M, Das H et al (2021) Impact of particle size on the magnetic properties of highly crystalline Yb3+ substituted Ni–Zn nanoferrites. J Mater Sci Mater Electron 32:16528–16543

    Article  CAS  Google Scholar 

  • Joshi J, Kanchan D, Joshi M, Jethva H, Parikh K (2017) Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater Res Bull 93:63–73

    Article  CAS  Google Scholar 

  • Kane S, Raghuvanshi S, Satalkar M, Reddy V, Deshpande U, Tatarchuk T et al (2018) Synthesis, characterization and antistructure modeling of Ni nano ferrite. AIP Conf Proc 1953(1):030089-1–4

    Google Scholar 

  • Kharabe R, Devan R, Kanamadi C, Chougule B (2006) Dielectric properties of mixed Li–Ni–Cd ferrites. Smart Mater Struct 15(2):N36

    Article  CAS  Google Scholar 

  • Kulal SR, Khetre SS, Jagdale PN, Gurame VM, Waghmode DP, Kolekar GB et al (2012) Synthesis of Dy doped Co–Zn ferrite by sol–gel auto combustion method and its characterization. Mater Lett 84:169–172

    Article  CAS  Google Scholar 

  • Kumar V, Rana A, Yadav M, Pant R (2008) Size-induced effect on nano-crystalline CoFe2O4. J Magn Magn Mater 320(11):1729–1734

    Article  CAS  Google Scholar 

  • Kumar A, Sharma P, Varshney D (2014) Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1−xNixFe2O4 (x = 0.0, 0.5, 1.0). Ceram Int 40(8):12855–12860

    Article  CAS  Google Scholar 

  • Kumbhar S, Mahadik M, Mohite V, Rajpure K, Kim J, Moholkar A et al (2014) Structural, dielectric and magnetic properties of Ni substituted zinc ferrite. J Magn Magn Mater 363:114–120

    Article  CAS  Google Scholar 

  • Kurtan U, Erdemi H, Baykal A, Güngüneş H (2016) Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram Int 42(12):13350–13358

    Article  CAS  Google Scholar 

  • Langhammer HT, Makovec D, Pu Y, Abicht H-P, Drofenik M (2006) Grain boundary reoxidation of donor-doped barium titanate ceramics. J Eur Ceram Soc 26(14):2899–2907

    Article  CAS  Google Scholar 

  • Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep 7(1):1–7

    CAS  Google Scholar 

  • Lima ES, Costa LS, Sampaio GR, Oliveira ES, Silva EB, Nascimento HO et al (2019) Zinc ferrite nanoparticles via coprecipitation modified method: glycerol as structure directing and stabilizing agent. J Braz Chem Soc 30:882–891

    CAS  Google Scholar 

  • Loganathan A, Kumar K (2016) Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures. Appl Nanosci 6(5):629–639

    Article  CAS  Google Scholar 

  • Luo F, Yan C-H (2008) Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite. Chem Phys Lett 452(4–6):296–300

    Article  CAS  Google Scholar 

  • Macdonald JR, Barsoukov E (2005) Impedance spectroscopy: theory, experiment, and applications. History 1(8):1–13

    Google Scholar 

  • Malik H, Mahmood A, Mahmood K, Lodhi MY, Warsi MF, Shakir I et al (2014) Influence of cobalt substitution on the magnetic properties of zinc nanocrystals synthesized via micro-emulsion route. Ceram Int 40(7):9439–9444

    Article  CAS  Google Scholar 

  • Mandal S, Singh S, Dey P, Roy J, Mandal P, Nath T (2016) Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T= Ni, Zn, Zn0. 5Ni0. 5) ferrite nanocrystals. J Alloy Compd 656:887–896

    Article  CAS  Google Scholar 

  • Mandal S, Singh S, Dey P, Roy J, Mandal P, Nath T (2017) Temperature and frequency dependence of AC electrical properties of Zn and Ni doped CoFe2O4 nanocrystals. Phil Mag 97(19):1628–1645

    Article  CAS  Google Scholar 

  • Manikandan A, Kennedy LJ, Bououdina M, Vijaya JJ (2014) Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J Magn Magn Mater 349:249–258

    Article  CAS  Google Scholar 

  • Modi K, Rangolia M, Chhantbar M, Joshi H (2006a) Study of infrared spectroscopy and elastic properties of fine and coarse grained nickel–cadmium ferrites. J Mater Sci 41(22):7308–7318

    Article  CAS  Google Scholar 

  • Modi K, Trivedi U, Sharma P, Lakhani V, Chhantbar M, Joshi H (2006b) Study of elastic properties of fine particle copper-zinc ferrites through infrared spectroscopy. Ind J Pure & Appl Phys 44(2):165–168

    CAS  Google Scholar 

  • Modi KB, Raval PY, Shah SJ, Kathad CR, Dulera SV, Popat MV et al (2015) Raman and mossbauer spectroscopy and X-ray diffractometry studies on quenched Copper–Ferri–Aluminates. Inorg Chem 54(4):1543–1555

    Article  CAS  Google Scholar 

  • Mohamed CB, Karoui K, Saidi S, Guidara K, Rhaiem AB (2014) Electrical properties, phase transitions and conduction mechanisms of the [(C2H5) NH3] 2CdCl4 compound. Physica B 451:87–95

    Article  CAS  Google Scholar 

  • Nikam DS, Jadhav SV, Khot VM, Bohara R, Hong CK, Mali SS et al (2015) Cation distribution, structural, morphological and magnetic properties of Co1–xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv 5(3):2338–2345

    Article  CAS  Google Scholar 

  • Pal B, Dhara S, Giri P, Sarkar D (2015) Evolution of room temperature ferromagnetism with increasing 1D growth in Ni-doped ZnO nanostructures. J Alloy Compd 647:558–565

    Article  CAS  Google Scholar 

  • Parashar J, Saxena V, Bhatnagar D, Sharma K (2015) Dielectric behaviour of Zn substituted Cu nano-ferrites. J Magn Magn Mater 394:105–110

    Article  CAS  Google Scholar 

  • Patange S, Shirsath SE, Jadhav S, Hogade V, Kamble S, Jadhav K (2013) Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. J Mol Struct 1038:40–44

    Article  CAS  Google Scholar 

  • Pendyala SK, Thyagarajan K, Kumar AG, Obulapathi L (2018) Effect of Mg do** on physical properties of Zn ferrite nanoparticles. J Aust Ceram Soc 54(3):467–473

    Article  CAS  Google Scholar 

  • Phor L, Kumar V (2019) Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4. Ceram Int 45(17):22972–22980

    Article  CAS  Google Scholar 

  • Phor L, Kumar V (2019) Self-cooling device based on thermomagnetic effect of Mnx Zn1–xFe2O4 (x= 0.3, 0.4, 0.5, 0.6, 0.7)/ferrofluid. J Materi Sci Mater Electron 30(10):9322–9333

    Article  CAS  Google Scholar 

  • Phor L, Chahal S, Kumar V (2020) Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: investigations on structural and spin-interactions. J Adv Ceram 9(5):576–587

    Article  CAS  Google Scholar 

  • Prabaharan DMDM, Sadaiyandi K, Mahendran M, Sagadevan S (2016) Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater Res 19(2):478–482

    Article  Google Scholar 

  • Rahaman MD, Nahar K, Khan M, Hossain AA (2016) Synthesis, structural, and electromagnetic properties of Mn0.5Zn0. 5−xMgxFe2O4 (x= 0.0, 0.1) polycrystalline ferrites. Physica B 481:156–164

    Article  CAS  Google Scholar 

  • Rahman S, Nadeem K, Anis-ur-Rehman M, Mumtaz M, Naeem S, Letofsky-Papst I (2013) Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram Int 39(5):5235–5239

    Article  CAS  Google Scholar 

  • Raju K, Venkataiah G, Yoon D (2014) Effect of Zn substitution on the structural and magnetic properties of Ni–Co ferrites. Ceram Int 40(7):9337–9344

    Article  CAS  Google Scholar 

  • Reddy SL (2017) Infrared spectra in oxide nanocomposites/minerals. Correlated functional oxides. Springer, pp 117–138

    Chapter  Google Scholar 

  • Rehman J, Khan MA, Hussain A, Iqbal F, Shakir I, Murtaza G et al (2016) Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram Int 42(7):9079–9085

    Article  CAS  Google Scholar 

  • Rivero M, del Campo A, Mayoral Á, Mazario E, Sánchez-Marcos J, Muñoz-Bonilla A (2016) Synthesis and structural characterization of ZnxFe3–xO4 ferrite nanoparticles obtained by an electrochemical method. RSC Adv 6(46):40067–40076

    Article  CAS  Google Scholar 

  • Sathishkumar G, Venkataraju C, Sivakumar K (2010) Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater Sci Appl 1(1):19–24

    CAS  Google Scholar 

  • Sathishkumar G, Venkataraju C, Sivakumar K (2013) Magnetic and dielectric properties of cadmium substituted nickel cobalt nanoferrites. J Mater Sci Mater Electron 24(3):1057–1062

    Article  CAS  Google Scholar 

  • Sathiyamurthy K, Rajeevgandhi C, Guganathan L, Bharanidharan S, Savithiri S (2021) Enhancement of magnetic, supercapacitor applications and theoretical approach on cobalt-doped zinc ferrite nanocomposites. J Mater Sci Mater Electron 32(9):11593–11606

    Article  CAS  Google Scholar 

  • Shahjuee T, Masoudpanah SM, Mirkazemi SM (2017) Coprecipitation synthesis of CoFe2O4 nanoparticles for hyperthermia. J Ultrafine Grain Nanostruct Mater 50(2):105–110

    CAS  Google Scholar 

  • Shakir M, Singh B, Gaur R, Kumar B, Bhagavannarayana G, Wahab M (2009) Dielectric behaviour and ac electrical conductivity analysis of ZnSe chalcogenide nanoparticles. Chalcogen Lett 6(12):655–660

    CAS  Google Scholar 

  • Shirsath SE, Patange S, Kadam R, Mane M, Jadhav K (2012) Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4. J Mol Struct 1024:77–83

    Article  CAS  Google Scholar 

  • Sondarva S, Shah D (2021) The electrical modulus, conductivity and dielectric properties of Mn3TeO6 multiferroic compound. J Alloys Compd 859:157773

    Article  CAS  Google Scholar 

  • Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc Lond A 240:599

    Article  Google Scholar 

  • Suresh S (2013) Synthesis, structural and dielectric properties of zinc sulfide nanoparticles. Int J Phys Sci 8(21):1121–1127

    Google Scholar 

  • Tadjarodi A, Imani M, Salehi M (2015) ZnFe2O4 nanoparticles and a clay encapsulated ZnFe2O4 nanocomposite: synthesis strategy, structural characteristics and the adsorption of dye pollutants in water. RSC Adv 5(69):56145–56156

    Article  CAS  Google Scholar 

  • Taher YB, Oueslati A, Maaloul N, Khirouni K, Gargouri M (2015) Conductivity study and correlated barrier hop** (CBH) conduction mechanism in diphosphate compound. Appl Phys A 120(4):1537–1543

    Article  CAS  Google Scholar 

  • Tanbir K, Ghosh MP, Singh RK, Kar M, Mukherjee S (2020) Effect of do** different rare earth ions on microstructural, optical, and magnetic properties of nickel–cobalt ferrite nanoparticles. J Mater Sci: Mater Electron 31(1):435–443

    CAS  Google Scholar 

  • Tatarchuk T, Bououdina M, Paliychuk N, Yaremiy I, Moklyak V (2017) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloy Compd 694:777–791

    Article  CAS  Google Scholar 

  • Tatarchuk TR, Paliychuk ND, Bououdina M, Al-Najar B, Pacia M, Macyk W et al (2018) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloy Compd 731:1256–1266

    Article  CAS  Google Scholar 

  • Thakur P, Sharma R, Kumar M, Katyal S, Negi N, Thakur N et al (2016) Superparamagnetic La doped Mn–Zn nano ferrites: dependence on dopant content and crystallite size. Mater Res Express 3(7):075001

    Article  CAS  Google Scholar 

  • Töpfer J, Angermann A (2011) Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater Chem Phys 129(1–2):337–342

    Article  CAS  Google Scholar 

  • Ünal B, Baykal A (2014) Effect of Zn substitution on electrical properties of nanocrystalline cobalt ferrite. J Supercond Novel Magn 27(2):469–479

    Article  CAS  Google Scholar 

  • Ur Rahman A, Rafiq M, Karim S, Maaz K, Siddique M, Hasan M (2011) Semiconductor to metallic transition and polaron conduction in nanostructured cobalt ferrite. J Phys D Appl Phys 44(16):165404

    Article  CAS  Google Scholar 

  • Ur Rahman A, Rafiq M, Maaz K, Karim S, Oh Cho S, Hasan M (2012) Temperature induced delocalization of charge carriers and metallic phase in Co0.6Sn0.4Fe2O4 nanoparticles. J Appl Phys 112(6):063718

    Article  CAS  Google Scholar 

  • Vasant SR, Joshi MJ (2011) Synthesis and characterization of pure and doped calcium pyrophosphate nano particles. Eur Phys J Appl Phys 53(1):10601–10606

    Article  Google Scholar 

  • Verma K, Kumar A, Varshney D (2012) Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferrites. J Alloy Compd 526:91–97

    Article  CAS  Google Scholar 

  • Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    Article  CAS  Google Scholar 

  • Waldron R (1955) Infrared Spectra of Ferrites. Phys Rev 99(6):1727

    Article  CAS  Google Scholar 

  • Yadav RS, Havlica J, Masilko J, Tkacz J, Kuřitka I, Vilcakova J (2016) Anneal-tuned structural, dielectric and electrical properties of ZnFe2O4 nanoparticles synthesized by starch-assisted sol–gel auto-combustion method. J Mater Sci Mater Electron 27(6):5992–6002

    Article  CAS  Google Scholar 

  • Younas M, Atif M, Nadeem M, Siddique M, Idrees M, Grossinger R (2011) Colossal resistivity with diminished tangent loss in Zn–Ni ferrite nanoparticles. J Phys D Appl Phys 44(34):345402

    Article  CAS  Google Scholar 

  • Younes M, Nadeem M, Atif M, Grossinger R (2010) Electric and dielectric properties of La0.5Ca0.5−xAgxMnO3 (LCMO-Ag with x= 0 and x= 04) were investigated using impedance. J Appl Phys 109:93704

    CAS  Google Scholar 

  • Zaki H, Al-Heniti S, Elmosalami T (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloy Compd 633:104–114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Pakistan Academy of Sciences (PAS). Dr. M. Nawaz Khan is acknowledged for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghari Maqsood.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, A., Maqsood, A. Physical properties, magnetic measurements, dielectric relaxation, and complex impedance studies of cobalt-doped zinc ferrite nanoparticles. Appl Nanosci 11, 2311–2336 (2021). https://doi.org/10.1007/s13204-021-02007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02007-y

Keywords

Navigation