Log in

Enhancement of magnetic, supercapacitor applications and theoretical approach on cobalt-doped zinc ferrite nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanostructured zinc ferrite, cobalt ferrite, and cobalt-doped zinc ferrite were synthesized by using a simple co-precipitation method. Physico-chemical analyses were investigated by thermogravimetric and differential thermal analysis (TG/DTA) and X-ray diffraction (XRD) techniques. The TG/DTA study revealed the thermal transformation of metal hydroxide precursors. The XRD representation confirmed the cubic spinel structure of the cobalt-doped zinc ferrite nanoparticles. The Fourier-transform infrared spectrum, recorded to acquire the characteristic vibration mode of the metal oxides, was present in the composites. The analyzed morphology was confirmed by field-emission transmission electron microscopy and field-emission scanning microscopy, revealing a spherical structure with an agglomeration of nanocomposites. Analysis of the energy dispersive X-ray spectrum of the cobalt-doped zinc ferrite nanocomposites exposed the elemental features. The prepared nanocomposites were examined using a vibrating sample magnetometer, which showed the transformation of paramagnetic to ferromagnetic behavior. The specific capacitance of the three ferrites were calculated, and there was a noticeable enhanced specific capacitance of 218 Fg−1 in Co0.5Zn0.5Fe2O4 at the scan rate of 10mV/s. In the present work, the mixed spinel structure of the nanocomposites revealed the magnetic and electrochemical properties. The prepared nanocomposites can be used in energy storage devices. The theoretical part was calculated by the density functional theory method, which was employed to study the structural, nonlinear optics, and physico-chemical parameters of CoZnFe2O4 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.D. Prasanna, H.S. Jayanna, A.R. Lamani, S. Dash, Polyaniline/CoFe2O4 nanocomposites: A novel synthesis, characterization and magnetic properties. Synthetic Metals 161(21–22), 2306–2311 (2011)

    Article  CAS  Google Scholar 

  2. K. Zhang, T. Holloway, A.K. Pradhan, Magnetic behavior of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 323(12), 1616–1622 (2011)

    Article  CAS  Google Scholar 

  3. X. Zhang, W. Jiang, D. Song, H. Sun, Z. Sun, F. Li, Salt-assisted combustion synthesis of highly dispersed superparamagnetic CoFe2O4 nanoparticles. J. Alloy. Compd. 475(1–2), 34–37 (2009)

    Article  Google Scholar 

  4. D. Chen, Q. Wang, R. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J. Mater. Chem. A 3(19), 10158–10173 (2015)

    Article  CAS  Google Scholar 

  5. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007)

    Article  CAS  Google Scholar 

  6. N.V. Long, Y. Yang, T. Teranishi, C.M. Thi, Y. Cao, M. Nogami, Related magnetic properties of CoFe2O4 cobalt ferrite particles synthesised by the polyol method with NaBH4 and heat treatment: new micro and nanoscale structures. RSC Adv. 5(70), 56560–56569 (2015)

    Article  CAS  Google Scholar 

  7. V.S. Kumbhar, A.D. Jagadale, N.M. Shinde, C.D. Lokhande, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)

    Article  CAS  Google Scholar 

  8. L. Lv, Q. Xu, R. Ding, L. Qi, H. Wang, Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater. Lett. 111, 35–38 (2013)

    Article  CAS  Google Scholar 

  9. P. He, K. Yang, W. Wang, F. Dong, L. Du, Y. Deng, Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ. J. Electrochem. 49(4), 359–364 (2013)

    Article  CAS  Google Scholar 

  10. C. Zhou, A. Zhang, T. Chang, Y. Chen, Y. Zhang, F. Tian, W. Zuo, Y. Ren, X. Song, S. Yang, The phase diagram and exotic magnetostrictive behaviors in spinel oxide Co(Fe1 – xAlx)2O4 system. Materials 12(10), 1685 (2019)

    Article  CAS  Google Scholar 

  11. K. Elayakumar, A. Manikandan, A. Dinesh, K. Thanrasu, K.K. Raja, R.T. Kumar, Y. Slimani, S.K. Jaganathan, A. Baykal, Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. J. Magn. Magn. Mater. 478, 140–147 (2019)

    Article  CAS  Google Scholar 

  12. T. Sathitwitayakul, M.V. Kuznetsov, I.P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating high-temperature synthesis. Mater. Lett. 75, 36–38 (2012)

    Article  CAS  Google Scholar 

  13. M. Kooti, M. Afshari, Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes. Sci. Iran. 19(6), 1991–1995 (2012)

    Article  Google Scholar 

  14. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316(1), 54–58 (2007)

    Article  CAS  Google Scholar 

  15. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur, A review on MnZn ferrites: Synthesis, characterization and applications. Ceram. Int. 46(10), 15740–15763 (2020)

    Article  CAS  Google Scholar 

  16. N.A.S. Nogueira, V.H.S. Utuni, Y.C. Silva, P.K. Kiyohara, I.F. Vasconcelos, M.A.R. Miranda, J.M. Sasaki, X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol–gel method. Mater. Chem. Phys. 163, 402–406 (2015)

    Article  CAS  Google Scholar 

  17. D.D. Andhare, S.R. Patade, J.S. Kounsalye, K.M. Jadhav, Effect of Zn do** on structural, magnetic and optical properties of cobalt ferrite nanoparticles synthesized via. Co-precipitation method. Physica B 583, 412051 (2020)

    Article  CAS  Google Scholar 

  18. Z.H. Yang, Z.W. Li, Y.H. Yang, Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel. Mater. Chem. Phys. 144(3), 568–574 (2014)

    Article  CAS  Google Scholar 

  19. U. Kurtan, H. Erdemi, A. Baykal, H. Güngüneş, Synthesis and magneto-electrical properties of MFe2O4 (Co, Zn) nanoparticles by oleylamine route. Ceram. Int. 42(12), 13350–13358 (2016)

    Article  CAS  Google Scholar 

  20. J. Töpfer, A. Angermann, Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: Synthesis and magnetic properties. Mater. Chem. Phys. 129(1–2), 337–342 (2011)

    Article  Google Scholar 

  21. M.A. Noor Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic Properties of Mechanically Alloyed Cobalt-Zinc Ferrite Nanoparticles. J. Supercond. Novel Magn. 27(5), 1293–1298 (2013)

    Article  Google Scholar 

  22. J. Rehman, M.A. Khan, A. Hussain, F. Iqbal, I. Shakir, G. Murtaza, M.N. Akhtar, G. Nasar, M.F. Warsi, Structural, magnetic and dielectric properties of terbium doped NiCoX strontium hexagonal nano-ferrites synthesized via micro-emulsion route. Ceram. Int. 42(7), 9079–9085 (2016)

    Article  CAS  Google Scholar 

  23. S.J. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Magnetic properties of zinc-substituted cobalt ferric oxide nanoparticles: Correlation with annealing temperature and particle size. Mater. Sci. Semicond. Process. 21, 33–37 (2014)

    Article  CAS  Google Scholar 

  24. A. Schütz, M. Günthner, G. Motz, O. Greißl, U. Glatzel, High temperature (salt melt) corrosion tests with ceramic-coated steel. Mater. Chem. Phys. 159, 10–18 (2015)

    Article  Google Scholar 

  25. X. Huang, J. Zhang, S. **ao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)

    Article  CAS  Google Scholar 

  26. M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles. J. Magn. Magn. Mater. 322(4), 383–388 (2010)

    Article  CAS  Google Scholar 

  27. A.B. Kulkarni, S.N. Mathad, Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites. Mater. Sci. Ener. Technol. 2(3), 455–462 (2019)

    Google Scholar 

  28. S. Raghuvanshi, F. Mazaleyrat, S.N. Kane, Mg1 – xZnxFe2O4 nanoparticles: Interplay between cation distribution and magnetic properties. AIP Adv. 8(4), 047804 (2018)

    Article  Google Scholar 

  29. A. Manikandan, L.J. Kennedy, M. Bououdina, J.J. Vijaya, Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J. Magn. Magn. Mater. 349, 249–258 (2014)

    Article  CAS  Google Scholar 

  30. K.M. Batoo, G. Kumar, Y. Yang, Y. Al-Douri, M. Singh, R.B. Jotania, A. Imran, Structural, morphological and electrical properties of Cd2+ doped MgFe2 – xO4 ferrite nanoparticles. J. Alloy. Compd. 726, 179–186 (2017)

    Article  CAS  Google Scholar 

  31. D. Varshney, K. Verma, A. Kumar, Substitutional effect on structural and magnetic properties of AxCo1–xFe2O4 (A = Zn, Mg and x = 0.0, 0.5) ferrites. J. Mol. Struct. 1006(1–3), 447–452 (2011)

    Article  CAS  Google Scholar 

  32. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg1 – xZnxFe2O4 ferrites. Physica B 407(4), 795–804 (2012)

    Article  CAS  Google Scholar 

  33. Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28(14), 2887–2892 (2009)

    Article  Google Scholar 

  34. G. Gnanaprakash, J. Philip, B. Raj, Effect of divalent metal hydroxide solubility product on the size of ferrite nanoparticles. Mater. Lett. 61(23–24), 4545–4548 (2007)

    Article  CAS  Google Scholar 

  35. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  36. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, Structure and electrical properties of Co0.5CdxFe2.5–xO4 ferrites. J. Alloy. Compd. 464(1–2), 361–369 (2008)

    Article  CAS  Google Scholar 

  37. S. Ayyappan, G. Paneerselvam, M.P. Antony, J. Philip, Structural stability of ZnFe2O4 nanoparticles under different annealing conditions. Mater. Chem. Phys. 128(3), 400–404 (2011)

    Article  CAS  Google Scholar 

  38. S. Ayyappan, G. Panneerselvam, M.P. Antony, J. Philip, High temperature stability of surfactant capped CoFe2O4 nanoparticles. Mater. Chem. Phys. 130(3), 1300–1306 (2011)

    Article  CAS  Google Scholar 

  39. S.H. **ao, W.F. Jiang, L.Y. Li, X.J. Li, Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater. Chem. Phys. 106(1), 82–87 (2007)

    Article  CAS  Google Scholar 

  40. Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Engin. B 141(1–2), 82–86 (2007)

    Article  CAS  Google Scholar 

  41. Z. Li, Y. **ong, Y. **e, Selected-Control Synthesis of ZnO Nanowires and Nanorods via a PEG-Assisted Route. Inorg. Chem. 42(24), 8105–8109 (2003)

    Article  CAS  Google Scholar 

  42. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12(4), 909–912 (1996)

    Article  CAS  Google Scholar 

  43. Y. Sun, Y. **a, Large-scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process. Adv. Mater. 14(11), 833–837 (2002)

    Article  CAS  Google Scholar 

  44. G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, structural and dielectric studies of nickel substituted cobalt-zinc ferrite. Mater. Sci. Appl. 01(01), 19–24 (2010)

    CAS  Google Scholar 

  45. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloy. Compd. 731, 1256–1266 (2018)

    Article  CAS  Google Scholar 

  46. A.I. Nandapure, S.B. Kondawar, P.S. Sawadh, B.I. Nandapure, Effect of zinc substitution on magnetic and electrical properties of nanocrystalline nickel ferrite synthesized by refluxing method. Physica B 407(7), 1104–1107 (2012)

    Article  CAS  Google Scholar 

  47. R.S. Yadav, J. Havlica, M. Hnatko, P. Šajgalík, C. Alexander, M. Palou, E. Bartoníčková, M. Boháč, F. Frajkorová, J. Masilko, M. Zmrzlý, L. Kalina, M. Hajdúchová, V. Enev, Magnetic properties of Co1 – xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling. J. Magn. Magn. Mater. 378, 190–199 (2015)

    Article  CAS  Google Scholar 

  48. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. 9(5), 055202 (2019)

    Article  Google Scholar 

  49. M.M. Vadiyar, S.C. Bhise, S.K. Patil, S.A. Patil, D.K. Pawar, A.V. Ghule, P.S. Patil, S.S. Kolekar, Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv. 5(57), 45935–45942 (2015)

    Article  CAS  Google Scholar 

  50. B.J. Rani, G. Ravi, R. Yuvakkumar, V. Ganesh, S. Ravichandran, M. Thambidurai, A.P. Rajalakshmi, A. Sakunthala, Pure and cobalt-substituted zinc-ferrite magnetic ceramics for supercapacitor applications. Appl. Phys. A 124(7), 1–12 (2018)

    Article  CAS  Google Scholar 

  51. M.A. Maksoud, R.A. Fahim, A.E. Shalan, M. Abd Elkodous, S.O. Olojede, A.I. Osman, C. Farrell, H. Ala’a, A.S. Awed, A.H. Ashour, D.W. Rooney, Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters, 1–65 (2020)

  52. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, H. Gaussian 09, Revision d (Gaussian. Inc., Wallingford, CT, 2009), p. 01

    Google Scholar 

  53. H.B. Schlegel, Optimization of equilibrium geometries and transition structures. J. Comput. Chem. 3(2), 214–218 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express special thanks to the Chairman Dr. M. Anwar Kabir, Annai Group of Institutions, Kumbakonam, Tamilnadu, India, for providing financial support for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rajeevgandhi.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathiyamurthy, K., Rajeevgandhi, C., Guganathan, L. et al. Enhancement of magnetic, supercapacitor applications and theoretical approach on cobalt-doped zinc ferrite nanocomposites. J Mater Sci: Mater Electron 32, 11593–11606 (2021). https://doi.org/10.1007/s10854-021-05764-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05764-2

Navigation