Log in

Impact of lanthanum ions on magnetic and dielectric properties of cobalt nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lanthanum-doped cobalt nanoferrites CoLaXFe2−XO4 (X = 0.00 to 0.08) were synthesized by using sol–gel method. A cubic spinel structure was confirmed by using X-ray diffraction pattern. A band obtained at 583 cm−1 recorded by Fourier transform infrared spectrum confirmed the presence of metal oxide spinel nanoferrites. The bandgap energy has increased with addition of La3+ ions by using ultraviolet diffuse reflectance spectrum. The grain boundary contribution is greater than that of grain contribution due to small crystal size, which was confirmed by an impedance analysis. The dielectric constant and dielectric losses decreased with increasing frequencies. The binding energy of La, Co, Fe and O were determined by X-ray photoelectron spectroscopy. The magnetic studies were analyzed through vibrating sample magnetometer. The hysteresis loop revealed the soft ferromagnetic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.S. Yadava, I. Kuritkaa, J. Vilcakovaa, J. Havlicab, L. Kalinab, P. Urbaneka, M. Machovskya, D. Skodaa, M. Masara, M. Holeka, Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticlesand its physical properties. Ultrason. Sonochem. 40, 773–783 (2018)

    Google Scholar 

  2. A. Kovalenko, R.S. Yadav, J. Pospisil, O. Zmeskal, D. Karashanova, P. Heinrichova, M. Vala, J. Havlica, M. Weiter, Towards improved efficiency of bulk-heterojunction. Solar cells using various spinel ferrite magnetic nanoparticles. Org. Electron. 39, 118–126 (2016)

    CAS  Google Scholar 

  3. P.N. Anantharamaiah, P.A. Joy, Tuning of the magnetostrictive properties of cobalt ferrite by forced distribution of substituted divalent metal ions at different crystallographic sites. J. Appl. Phys. 121, 093904 (2017)

    Google Scholar 

  4. X. Lasheras, M. Insausti, I. Gil de Muro, E. Garaio, F. Plazaola, M. Moros, L. De, J.M. de la Matteis, L.L. Fuente, Chemical synthesis and magnetic properties of monodisperse nickel ferrite nanoparticles for biomedical applications. J. Phys. Chem. C 120(6), 3492–3500 (2016)

    CAS  Google Scholar 

  5. L. Kumar, M. Kar, Effect of La3+ substitution on the structural and magneto crystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2-xLaxO4). Ceram. Int. 438, 4771–4778 (2012)

    Google Scholar 

  6. K. Pubby, S.S. Meena, S.M. Yusuf, S.B. Narang, Cobalt substituted nickel ferrites via Pechini’s sol-gel route: X-band electromagnetic characterization. J. Magn. Magn. Mater. 466, 430–445 (2018)

    CAS  Google Scholar 

  7. L.T. Lu, N.T. Dung, L.D. Tung, C.T. Thanh, O.K. Quy, N.V. Chuc, S. Maenosono, N.T.K. Thanh, Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, mono dispersity and composition: the influence of solvent, surfactant, reductant and synthetic conditions. Nanoscale 7, 19596 (2015)

    CAS  Google Scholar 

  8. H. Widatallah, C. Johnson, A. Gismelseed, I. Al-Omari, S. Stewart, S. Al-Harthi, S. Thomas, H. Sitepu, Structural and magnetic studies of nanocrystalline Mg-doped Li0.5Fe2.5O4 particles prepared by mechanical milling. J. Phys. D 41, 165006 (2008)

    Google Scholar 

  9. S.K. Gore, S.S. Jadhav, V.V. Jadhav, S.M. Patange, M. Naushad, R.S. Mane, K.H. Kim, The structural and magnetic properties of dual phase cobalt ferrite. Sci. Rep. 7, 2524 (2017)

    Google Scholar 

  10. K.K. Bharathi, R.J. Tackett, C.E. Botez, C.V. Ramana, Coexistence of spin glassbehavior and long-range ferromagnetic ordering in La- and Dy-doped Co ferrite. J. Appl. Phys. 109, 07A510 (2011)

    Google Scholar 

  11. N. Lenin, R.R. Kanna, K. Sakthipandi, A.S. Kumar, Structural, electrical and magnetic properties of NiLaxFe2-xO4 nanoferrites. Mater. Chem Phy. 212, 385–393 (2018)

    CAS  Google Scholar 

  12. J. Azadmanjiri, H.K. Salehani, M.R. Barati, F. Farzan, Preparation and electromagnetic properties of Ni1-xCuxFe2O4 nanoparticle ferrites by sol-gel auto combustion method. Mater. Lett. 61, 84–87 (2007)

    CAS  Google Scholar 

  13. H. Wang, H. Guo, Y. Dai, D. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, Z. Zhang, Optimal electromagnetic-wave absorption by enhanced dipole polarization inNi/C nanocapsules. Appl. Phys. Lett. 101, 083116 (2012)

    Google Scholar 

  14. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, D.R. Mane, Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2-xO4 nanoparticles fabricated by solgel method. J. Alloys Compd. 549, 213–220 (2013)

    CAS  Google Scholar 

  15. P.K. Roy, J. Bera, Enhancement of the magnetic properties of Ni-Cu-Zn ferrites with the substitution of a small fraction of lanthanum for iron. Mater. Res. Bull. 42, 77–83 (2007)

    CAS  Google Scholar 

  16. M.R. Kadam, R.P. Patil, P.P. Hankare, Investigations on structural, electrical andmagnetic properties of nickel substituted La-ferrites. Solid State Sci. 14, 964–970 (2012)

    CAS  Google Scholar 

  17. R.R. Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of Lanthanum on structural, optical, dielectric and magnetic properties of Mn1-xCuxFe1.85La0.15O4 spinel nanoferrites. Ceram. Int. 43, 15868–15879 (2017)

    Google Scholar 

  18. K. Sakthipandi, V. Rajendrana, T. Jayakumar, B. Raj, P. Kulandivelu, Synthesis and on-line ultrasonic characterisation of bulk and nanocrystalline La068Sr032MnO3 perovskite manganite. J. Alloys Compd 509, 3457–3467 (2011)

    CAS  Google Scholar 

  19. A.M. Anwar, Enhancement of electrical and magnetic properties of Cd2+ doped Mn–Zn soft nanoferrites prepared by the sol–gel autocombustion method H. J. Magn. Magn. Mater. 333, 46–52 (2013)

    CAS  Google Scholar 

  20. Z. Yan, J. Gao, Y. Li, M. Zhang, M. Guo, Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv. 5, 92778–92787 (2015)

    CAS  Google Scholar 

  21. J. de Vicente, A.V. Delgado, R.C. Plaza, J.D.G. Duran, F.G. Caballero, Stability of Cobalt ferrite colliodal particles. Effect of pH and applied magnetic fields. Langmuir 16, 7954–7961 (2000)

    Google Scholar 

  22. F. Bensebaa, L. Zavaliche, P. Ecuyer, R.W. Cochrane, T. Veres, Microwave synthesis and characterization of co-ferrite nanoparticles. J Colloid Interface Sci 277, 104–110 (2004)

    CAS  Google Scholar 

  23. S. Gaba, A. Kumar, P.S. Rana, M. Arora, Influence of La3+ ion do** on physical properties of magnesium nanoferrites for microwave absorption application. J. Magn. Magn. Mater. S0304–8853, 32557 (2017)

    Google Scholar 

  24. B. Vigneshwaran, P. Kuppusami, A. Panda, A. Singh, H. Sreemoolanadhan, Microstructure and optical properties of Ba0.6Sr0.4TiO3 thin films prepared by pulsed laser deposition. Mater. Res. Express 5, 0664 (2018)

    Google Scholar 

  25. A. Sattar, A.M. Samy, R.S. El-Ezza, A.E. Eatah, Effect of rare-earth substitution on magnetic and electrical properties of Mn–Zn ferrites. Phys. Status Solid 193(1), 86–93 (2002)

    CAS  Google Scholar 

  26. M.I. Ali, U. Islam, M.I. Hasan, M. Khan, M.N. Ashiq, Effect of Gd-substitution on physical and magnetic properties of Li1.2Mg0.4GdxFe(2–x)O4 ferrites. J Alloys Compd. 579, 181–186 (2013)

    Google Scholar 

  27. R.S. Yadav, J. Havlica, J. Masilko, L. Kalina, J. Wasserbauer, M. Hajduchova, V. Enev, I. Kuritka, Z. Kozakova, Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater. 399, 109–117 (2015)

    Google Scholar 

  28. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Structural and Electrical Studies of MnGdxFe2-xO4 Nanoparticles. J. Magn. Magn. Mater. 323, 133–138 (2011)

    CAS  Google Scholar 

  29. I. Ali, M. Ahmad, M.U. Islam, M.S. Awan, Substitution effects of La3+ ions on the structural and magnetic properties of Co2Y hexaferrites synthesized by sol–gel autocombustion method (Springer, New York, 2013)

    Google Scholar 

  30. E.R. Kumar, T. Arunkumar, T. Prakash, Heat treatment effects on structural and dielectric properties of Mn substituted CuFe2O4 and ZnFe2O4 nanoparticles. J. Superlatt. Microstruct. 85, 530–535 (2015)

    Google Scholar 

  31. L. Saravanan, R. Jayavel, A. Pandurangan, J.H. Liu, H.Y. Miao, Synthesis, structural and optical properties of Sm3+ and Nd3+ doped cadmium sulfide nanocrystals. Mater. Res. Bull. 52, 128 (2014)

    CAS  Google Scholar 

  32. P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala, A.K. Tripathi, Synthesis and characterization of nanocrystalline Ti-substituted Zn ferrite. J. Alloy. Compd. 509, 2160–2163 (2011)

    CAS  Google Scholar 

  33. G. Mustafa, M.U. Islam, M. Ahmad, W. Zhang, Y. Jamil, A. Wahee, A.M. Hussain, Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0.5-xCdxCo0.5Cr0.04TbyFe1.96-yO4 ferrites prepared by sol-gel method. J. Magn. Magn. Mater. 387, 147–154 (2015)

    CAS  Google Scholar 

  34. P.P. Hankare, K.R. Sanadi, K.M. Garadkar, D.R. Patil, I.S. Mulla, Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol-gel auto-combustion method. J. Alloys Compd. 553, 383–388 (2013)

    CAS  Google Scholar 

  35. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–138 (2011)

    CAS  Google Scholar 

  36. P.S. Aghav, V.N. Dhage, M.L. Mane, D.R. Shengule, R.G. Dorik, K.M. Jadhav, Effect of aluminium substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys. B 406, 4350–4354 (2011)

    CAS  Google Scholar 

  37. M.H. Abdellatif, C. Innocenti, I. Liakos, A. Scarpellini, S. Marras, M. Salerno, Effect of Jahn-Tellerdistortion on the short range magnetic order in copper ferrite. J. Magn. Magn. Mater. 424, 402–409 (2017)

    CAS  Google Scholar 

  38. S. Anandan, T. Selvamani, G.G. Prasad, A.M. Asiri, J.J. Wu, Magnetic and catalytic properties of inversespinel CuFe2O4 nanoparticles. J. Magn. Magn. Mater. 43, 437–443 (2017)

    Google Scholar 

  39. N. Venkatesha, S.M. Pudakalakatti, Y. Qurishi, H.S. Atreya, C. Srivastava, MnFe2O4-Fe3O4 core-shell nanoparticles as potential contrast agent for magnetic resonance imaging. RSC Adv. 5, 97807–97815 (2015)

    CAS  Google Scholar 

  40. Z.K. Karakas, R. Boncukcuoglu, I.H. Karakas, The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method. J. Magn. Magn. Mater. 374, 298–306 (2015)

    Google Scholar 

  41. R.S. Yadav, I. Kuritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Svec, V. Enev, M. Hajduchov, Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. 8, 045002 (2017)

    Google Scholar 

  42. H.S. Aziz, S. Rasheed, R.A. Khan, A. Rahim, J. Nisar, S.M. Shah, F. Iqbal, A.R. Khan, Evaluation of electrical, dielectric and magnetic characteristics of Al-La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)

    CAS  Google Scholar 

  43. Y.K. Dasan, B.H. Guan, M.H.Z. Chuan, Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni-Zn ferrite. PLoS ONE 12(1), e0170075 (2017)

    CAS  Google Scholar 

  44. B. Santosh, N. Tsering, S. Mor, S. Bansal, S. Singhal, Structural, electrical, optical and magnetic properties of chromium substituted Co–Zn nanoferrites Co0.6Zn0.4CrxFe2xO4 (0 6 x 6 1.0) prepared via sol–gel auto-combustion method. J. Mol. Struct. 1012, 162–167 (2012)

    Google Scholar 

  45. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, Effect of Gd3+ substitution on structural, magnetic, dielectric and opticalproperties of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 426, 252–263 (2017)

    CAS  Google Scholar 

  46. H. Anwar, A. Maqsood, Structural, magnetic and electrical properties of Cu substituted Mn Zn soft nanoferrites. J. Supercond. Nov. Magn. 25, 1913–1920 (2012)

    CAS  Google Scholar 

  47. Y. Zhou, W. Chen, Y. Shen, X. Wu, W. Wu, J. Wu, Lattice strains and magnetic properties evolution of copper-magnesium ferrite with lithium substitution. J. Magn. Magn Mater. 396, 198–203 (2015)

    CAS  Google Scholar 

  48. R. Tholkappiyan, K. Vishista, Influence of lanthanum on the optomagnetic properties of zinc ferrite prepared by combustion method. Phys. B 448, 177–183 (2014)

    CAS  Google Scholar 

  49. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Ferrite nanoparticles:synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 215, 37–55 (2017)

    CAS  Google Scholar 

  50. K. Lily, K. Kumari, R.N. Prasad, P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5) (Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloy. Compd. 453, 325–331 (2008)

    CAS  Google Scholar 

  51. M.A. Rahman, A.K.M.A. Hossain, Electrical transport properties of Mn–Ni–Zn ferrite using complex impedance spectroscopy. Phys. Scr. 89, 025803 (2014)

    Google Scholar 

  52. R.V. Mangalaraja, S. Ananthakumar, P. Manohar, F.D. Gnanam, Magnetic, electrical and dielectric behaviour of Ni0.8Zn0.2Fe2O4 prepared through flash combustion technique. J. Magn. Magn. Mater. 253, 56–64 (2002)

    CAS  Google Scholar 

  53. C. Murugesan, G. Chandrasekaran, Impact of Gd3+-substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)

    CAS  Google Scholar 

  54. D.M. Jnaneshwara, D.N. Avadhani, B. Daruka Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumar, Role of Cu2+ ions substitution in magnetic and conductivity behaviour of nano CoFe2O4. Spectrochim. Acta Part A 132, 256–262 (2014)

    CAS  Google Scholar 

  55. J. Parashar, V.K. Saxena, D. Jyoti, K.B. Bhatnagar, Sharma, Dielectric behaviour of Zn substituted Cu nano-ferrites. J. Magn. Magn. Mater. 394, 105–110 (2015)

    CAS  Google Scholar 

  56. D. Ravinder, P.V.B. Reddy, High-frequency dielectric behaviour of Li–Mg ferrites. Mater. Lett. 57, 4344–4350 (2003)

    CAS  Google Scholar 

  57. G.R. Mohan, D. Ravinder, A.V.R. Reddy, B.S. Boyanov, Dielectric properties of polycrystalline mixed nickel–zinc ferrites. Mater. Lett. 40, 39–45 (1999)

    Google Scholar 

  58. M.J. Iqbal, R.A. Khan, S. Mizukami, T. Miyazaki, Mossbauer, magnetic and microwave absorption characteristics of substituted W-type hexaferrites nanoparticles. Ceram. Int. 38, 4097–4103 (2012)

    CAS  Google Scholar 

  59. R.K. Kotnala, Preparation and characterization chemistry of nano-crystalline NiCuZn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Google Scholar 

  60. M.H. Alimuddin, S.E. Shirsath, S. Kumar, R. Kumar, A.S. Roy, J. Shah, R.K. Kotnala, Preparation and characterization chemistry of nano-crystalline NiCuZn ferrite. J. Alloys Compd. 549, 348–357 (2013)

    Google Scholar 

  61. S.F. Mansour, Frequency and composition dependence on the dielectric properties for Mg–Zn ferrite. Egypt. J.Solids 28(2), 211–214 (2005)

    Google Scholar 

  62. Z.C. Veji, S. Raki, S. Jankov, S. Skuban, A. Kapor, Dielectric properties and conductivity of zinc ferrite and zinc ferrite doped with yttrium. J. Alloy. Compd. 480, 241–245 (2009)

    Google Scholar 

  63. S.A. Saafan, S.T. Assar, Dielectric behavior of nano-structured and bulk LiNiZn ferrite samples. J. Magn. Magn. Mater. 324, 2989–3001 (2012)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kartharinal Punithavathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartharinal Punithavathy, I., Rajeshwari, A., Johnson Jeyakumar, S. et al. Impact of lanthanum ions on magnetic and dielectric properties of cobalt nanoferrites. J Mater Sci: Mater Electron 31, 9783–9795 (2020). https://doi.org/10.1007/s10854-020-03523-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03523-3

Navigation