Log in

Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly crystalline cobalt ferrite (CoFe2O4) nanoparticles with diameter ranging from 5 to 19 nm were prepared by a mechanical alloying method followed by thermal treatment. The formation of a single-phase compound was confirmed by basic X-ray structural analysis, and the nano-structure of the sample was confirmed by high-resolution transmission microscope. The crystallite size of the material was found to be milling time dependent. Relative permittivity and tangent loss of the material are strongly dependent on the crystallite size. The temperature-frequency dependence of dielectric parameters and temperature dependent electrical conductivity has successfully been explained using Maxwell–Wagner and Koop’s phenomenological models. Impedance spectroscopy clearly explains dependence of resistive characteristics and dielectric relaxation of the material. The nature of impedance spectra exhibits a typical negative-temperature-co-efficient of resistance. The magnetic measurement shows that saturation magnetization is particle size dependent. The ac conductivity spectrum of the material shows a typical-signature of an ionic conduction, and is found to obey Jonscher’s universal power law. The change in activation energy with particle size is observed suggesting a typical conduction mechanism in the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.C. Slonczewski, Phys. Rev. 110, 1341 (1958)

    Article  Google Scholar 

  2. P.C. Dorsey, P. Lubitz, D.B. Chrisey, J.S. Horowitz, J. Appl. Phys. 79, 6338 (1996)

    Article  Google Scholar 

  3. I.G. Lee, J.K. Park, Y.J. Oh, C.S. Kim, J. Appl. Phys. 84, 2801 (1998)

    Article  Google Scholar 

  4. D. Makovec, A. Košak, A. Žnidrašič, M. Drofenik, J. Magn. Magn. Mater. 289, 32–35 (2005)

    Article  Google Scholar 

  5. J.B. Silva, C.F. Diniz, R.M. Lago, N.D.S. Mohallem, J. Non-Cryst, Solids 348, 201–204 (2004)

    Google Scholar 

  6. S.L. Darshane, S.S. Suryavanshi, I.S. Mulla, Ceram. Int. 35, 1793–1797 (2009)

    Article  Google Scholar 

  7. C. **angfeng, J. Dongli, G. Yu, Z. Chenmou, Sens. Actuators, B 120, 177–181 (2006)

    Article  Google Scholar 

  8. R.B. Kamble, V.L. Mathe, Sens. Actuators, B 131, 205–220 (2008)

    Article  Google Scholar 

  9. I. Koh, L. Josephson, Sensors 9, 8130–8145 (2009)

    Article  Google Scholar 

  10. S. Amiri, H. Shokrollahi, Mater. Sci. Eng., C 33, 1–8 (2013)

    Article  Google Scholar 

  11. Y. Koseoglu, F. Alan, M. Tan, R. Yilgin, M. Ozturk, Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  12. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, J. Magn. Magn. Mater. 321, 1251–1255 (2009)

    Article  Google Scholar 

  13. Q. Song, Z.J. Zhang, J. Am. Chem. Soc. 126, 6164–6168 (2004)

    Article  Google Scholar 

  14. L. Ai, J. Jiang, Curr. Appl. Phys. 10, 284–288 (2010)

    Article  Google Scholar 

  15. R.V. Chopdekar, Y. Suzuki, Appl. Phys. Lett. 89, 182506 (2006)

    Article  Google Scholar 

  16. I.C. Nlebedim, J.E. Snyder, A.J. Moses, D.C. Jiles, J. Magn. Magn. Mater. 322, 3938–3942 (2010)

    Article  Google Scholar 

  17. Y.H. Hou, Y.J. Zhao, Z.W. Liu, H.Y. Yu, X.C. Zhong, W.Q. Qiu, D.C. Zeng, L.S. Wen, J. Phys. D Appl. Phys. 43, 445003 (2010)

    Article  Google Scholar 

  18. S. Imine, F. Schoenstein, S. Mercone, M. Zaghrioui, N. Bettahar, N. Jouini, J. Eur. Ceram. Soc. 31, 2943–2955 (2011)

    Article  Google Scholar 

  19. D.J. Fatemi, V.G. Harris, V.M. Browning, J.P. Kirkland, J. Appl. Phys. 83, 6878 (1998)

    Article  Google Scholar 

  20. A.S. Ponce, E.F. Chagas, R.J. Prado, C.H.M. Fernandes, A.J. Terezo, E. Baggio-Saitovitch, J. Magn. Magn. Mater. 344, 182–187 (1998)

    Article  Google Scholar 

  21. Y. Cedeño-Mattei, O. Perales-Pérez, N.C.U. Oswald, J. Magn. Magn. Mater. 341, 17–24 (2013)

    Article  Google Scholar 

  22. Hasan Yungevis, Emel Ozel, Ceram. Int. 39, 5503–5511 (2013)

    Article  Google Scholar 

  23. E. Wu, POWD, an interactive powder diffraction data interpretation and indexing program, Ver. 2.1 (School of Physical Sciences, Flinders University, South Bedford Park)

  24. R.K. Panda, D. Behera, J. Alloy. Compd. 587, 481–486 (2014)

    Article  Google Scholar 

  25. N. Sivakumar, A. Narayansamy, J. Appl. Phys. 102, 013916 (2007)

    Article  Google Scholar 

  26. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems, vol. 4 (Wiley, New York, 1987)

    Google Scholar 

  27. J. Suchanicz, Mater. Sci. Eng., B 55, 114–118 (1998)

    Article  Google Scholar 

  28. V. Provenzano, L.P. Boesch, V. Volterra, J. Am. Ceram. Soc. 55, 492–496 (1972)

    Article  Google Scholar 

  29. G.P. Lopez, S.P. Silvetti, Phys. B 354, 141–144 (2004)

    Article  Google Scholar 

  30. R.C. Kambale et al., J. Korean Phys. Soc. 59, 3385–3390 (2011)

    Article  Google Scholar 

  31. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  32. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172, 1408–1412 (1994)

    Google Scholar 

  33. J.R. Macdonald, J. Electroanal. Chem. 223, 25–50 (1987)

    Article  Google Scholar 

  34. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226–232 (2007)

    Article  Google Scholar 

  35. G.H. Jonker, J. Phys. Chem. Solids 9, 165–175 (1959)

    Article  Google Scholar 

  36. K. Funke, Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  37. M. George, S.S. Nair, K.A. Malini, P.A. Joy, M.R. Anantharaman, J. Phys. D Appl. Phys. 40, 1593 (2007)

    Article  Google Scholar 

  38. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  Google Scholar 

  39. C. Behera, P.R. Das, R.N.P. Chodhary, J. Electron. Mater. 43, 3539–3549 (2014)

    Article  Google Scholar 

  40. N. Sivakumar, A. Narayanasamy, N. Ponpadian, J.-M. Greneche, K. Shinoda, B. Jayadevan, K. Tohji, J. Phys. D Appl. Phys. 39, 4688 (2006)

    Article  Google Scholar 

  41. T. Yu, Z.X. Shen, J.M. Xue, J. Wang, J. Appl. Phys. 93, 3470–3474 (2003)

    Article  Google Scholar 

  42. C. Behera, R.N.P. Chodhary, P.R. Das, J. Mater. Sci.: Mater. Electron. 25, 2086–2095 (2014)

    Google Scholar 

  43. E. Veena Gopalan, P.A. Joy, I.A. Al-Omari, D. Sakthi Kumar, Y. Yoshida, M.R. Anantharaman, J. Alloy. Compd. 485, 711–717 (2009)

    Article  Google Scholar 

  44. E.V. Gopalan, K.A. Malini, S. Saravanan, D.S. Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 411, 85005 (2011)

    Google Scholar 

  45. A.R. Long, Adv. Phys. 31, 553–637 (1982)

    Article  Google Scholar 

  46. M. Artus, L. Ben Tahar, F. Herbst, L. Smiri, F. Villain, N. Yaacoub, J.-M. Greneche, S. Ammar, F. Fievet, J. Phys.: Condens. Matter 23, 506001 (2011)

    Google Scholar 

  47. R.H. Kodma, J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the grant received from DRDO (Grant No. ERIP/ER/1102202/M/01/1438 dated 25/07/2012) Government of India to carry out this work. The authors also grateful to CRF, IIT Kharagpur for providing some experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Behera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, C., Choudhary, R.N.P. & Das, P.R. Size effect on electrical and magnetic properties of mechanically alloyed CoFe2O4 nanoferrite. J Mater Sci: Mater Electron 26, 2343–2356 (2015). https://doi.org/10.1007/s10854-015-2690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2690-3

Keywords

Navigation