Log in

Mössbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This study reports the preparation and characterization of nanocrystalline spinel powder of cubic copper ferrite nanoparticles (NPs) which have been fabricated via a cost-effective citrate sol–gel approach. The structural and morphological properties of the nanoparticles are analyzed by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), and scanning electron microscopy (SEM) whereas magnetic properties and Mössbauer analysis were performed using vibrating sample magnetometer (VSM) and Mössbauer spectra, respectively, and were characterized in detail. The empirical aim of this study is to perceive the transition phase of CuFe2O4 as cubic symmetry which was confirmed by SEM images, and a couple of studies reported on the cubic structure of copper ferrite and discussed the magnetic properties. However, the present study gives the detailed information of the formation of cubic structure and magnetic behavior of the CuFe2O4 cubic structure. X-ray diffraction measurements of resulting NPs show that the grain size of the particles is about 42.08 nm while SEM analysis showed that the particles have cubic nanostructured shapes with non-homogeneous sizes in around 80–100 nm. From 57Fe, Mössbauer parameters consist of one superparamagnetic doublet and superposition of four sextets. VSM result shows the enhanced superparamagnetic nature of the CuFe2O4 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong, J., Xu, D.M., Yu, J.H., Gong, P.J., Ma, H.J., Yao, S.D.: Nanotechnol 18, 135608 (2007)

    Article  ADS  Google Scholar 

  2. Park, J.H., Maltzahn, G.V., Zhang, L.L., Schwartz, M.P., Ruoslahti, E., Bhatia, S.N., Sailor, M.J.: Adv. Mater. 20, 1630–1635 (2008)

    Article  Google Scholar 

  3. Haija, M.A., Abu-Hani, A.F.S., Hamdan, N., Stephen, S., Ayesh, A.I.: Characterization of H2S gas sensor based on CuFe2 O 4 nanoparticles. J. Alloy Compd. 690, 461–468 (2017)

    Article  Google Scholar 

  4. Zaharieva, K., Rives, V., Tsvetkov, M., Cherkezova-Zheleva, Z., Kunev, B., Trujillano, R., Mitov, I., Milanova, M.: Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation. Mater. Chem. Phys. 160, 271–278 (2015)

    Article  Google Scholar 

  5. Wojtowicz, P.J.: Theoretical model for tetragonal-to-cubic phase transformations in transition metal spinels. Phys. Rev. 116, 32 (1959)

    Article  ADS  Google Scholar 

  6. Krupicka, S., Novak, P.: In: Wohlfarth, E.P. (ed.) Ferromagnetic Materials, vol. 3. North Holland, Amsterdam (1982)

  7. Tang, X.X., Manthiram, A., Goodenough, J.B.: Copper ferrite revisited. J. Solid State Chem. 79, 250 (1989)

    Article  ADS  Google Scholar 

  8. Pajíc, D, Zadro, K, Vanderberghe, R E, Nedkov, I.: Superparamagnetic relaxation in CuxFe3−x O 4 (x = 0.5 and x = 1) nanoparticles. J. Magn. Magn. Mater. 281, 353 (2004)

    Article  ADS  Google Scholar 

  9. Masoumi, S., Nabiyouni, G., Ghanbari, D.: Photo-degradation of azo dyes: photo catalyst and magnetic investigation of CuFe2O4–TiO2 nanoparticles and nanocomposites. J. Mater. Sci. Mater. Electron. 27, 9962–9975 (2016)

    Article  Google Scholar 

  10. Nabiyouni, G., Sharifi, S., Ghanbari, D., Salavati-Niasari, M.: A simple precipitation method for synthesis CoFe2O4 nanoparticles. J. Nanostruct. 4(3), 317–323 (2014)

    Google Scholar 

  11. Hou, H., Xu, G., Tan, S., Zhu, Y.: A facile sol-gel strategy for the scalable synthesis of CuFe2 O 4 nanoparticles with enhanced infrared radiation property: influence of the synthesis conditions. Infrared Phys. Technol. 85, 261–265 (2017)

    Article  ADS  Google Scholar 

  12. Shettya, K., Renuka, L., Nagaswarupa, H.P., Nagabhushana, H., Anantharaju, K.S., Rangappa, D., Prashantha, S.C., Ashwini, K.: A comparative study on CuFe2 O 4, ZnFe2 O 4 and NiFe2 O 4: morphology, impedance and photocatalytic studies. Mater. Today Proc. 4, 11806–11815 (2017)

    Article  Google Scholar 

  13. Haija, M.A., Abu-Hani, A.F.S., Hamdan, N., Stephen, S., Ayesh, A.I.: Characterization of H2S gas sensor based on CuFe2 O 4 nanoparticles. J. Alloys Compd. 690, 461–468 (2017)

    Article  Google Scholar 

  14. Agouriane, E., Rabi, B., Essoumhi, A., Razouk, A., Sahlaoui, M., Costa, B.F.O., Sajieddine, M.: Structural and magnetic properties of CuFe2 O 4 ferrite nanoparticles synthesized by co-precipitation. J. Mater. Environ. Sci. 7(11), 4116–4120 (2016)

    Google Scholar 

  15. Amir, Md., Baykal, A., Güner, S., Güngüneş, H., Sözeri, H.: Magneto-optical investigation and hyperfine interactions of copper substituted Fe3 O 4 nanoparticles. Ceram. Int. 42, 5650–5658 (2016)

    Article  Google Scholar 

  16. Balagurov, A.M., Bobrikov, I.A., Maschenko, M.S., Sangaa, D., Simkin, V.G.: Structural phase transition in CuFe2 O 4 spinel. Crystallograp. Rep. 58(2), 710–717 (2013)

    Article  ADS  Google Scholar 

  17. Kanagaraj, M., Sathishkumar, P., Selvan, G.K., Kokila, I.P., Arumugam, S.: Structural and magnetic properties of CuFe2 O 4 as prepared and thermally treated spinel nanoferrites. Ind. J. Pure Appl. Phys. 52, 124–130 (2014)

    Google Scholar 

  18. Baykal, A., Güngüneş, H., Sözeri, H., Amir, Md., Auwal, I., Asiri, S., Shirsath, S.E., Demir Korkmaz, A.: Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12 O 19 hexaferrites. Ceram. Int. 43, 15486–15492 (2017)

    Article  Google Scholar 

  19. Sreedhar, B., Kumar, A.S., Reddy, P.S.: Magnetically separable Fe3O4 nanoparticles: an efficient catalyst for the synthesis of propargylamines. Tetrahedron. Lett. 51(14), 1891–1895 (2010)

    Article  Google Scholar 

  20. Baykal, A., Esir, S., Demir, A., Güner, S.: Magnetic and optical properties of Cu1−xZnxFe2 O 4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method. Ceram. Int. 41, 231–239 (2015)

    Article  Google Scholar 

  21. Almessiere, M.A., Slimani, Y., Baykal, A.: Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.02.101

    Article  Google Scholar 

  22. Güner, S., Amir, Md., Geleri, M., Sertkol, M., Baykal, A.: Magneto-optical properties of Mn3+ substituted Fe3 O 4 nanoparticles. Ceram. Int. 41, 10915–10922 (2015)

    Article  Google Scholar 

  23. Najmoddin, N., Beitollahi, A., Devlin, E., Kavas, H., Mohseni, S.M., Åkerman, J., Niarchos, D., Rezaie, H., Muhammed, M., Toprak, M.S.: Magnetic properties of crystalline mesoporous Zn-substituted copper ferrite synthesized under nanoconfinement in silica matrix. Microporous Mesoporous Mater. 190, 346–355 (2014)

    Article  Google Scholar 

  24. Najmoddin, N., Beitollahi, A., Kavas, H., Majid Mohseni, S., Rezaie, H., Åkerman, J., Toprak, M.S.: XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2 O 4. Ceram. Int. 40, 3619–3625 (2014)

    Article  Google Scholar 

  25. Coey, J.M.D.: Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 27, 1140–1142 (1971)

    Article  ADS  Google Scholar 

  26. Pankhurst, Q.A., Pollard, R.J.: Origin of the spin-canting anomaly in small ferrimagnetic particles. Phys. Rev. Lett. 67, 248–250 (1991)

    Article  ADS  Google Scholar 

  27. del Muro, M.G., Batlle, X., Labarta, A.: Erasing the glassy state in magnetic fine particles. Phys. Rev. B 59, 13584–13587 (1999)

    Article  ADS  Google Scholar 

  28. Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., Kostikas, A.: Size-dependent magnetic properties of MnFe2 O 4 fine particles synthesized by coprecipitation. Phys. Rev. B 54, 9288–9296 (1996)

    Article  ADS  Google Scholar 

  29. Vollath, D., Szabó, D.V., Taylor, R.D., Willis, J.O.: Synthesis and magnetic properties of nanostructured maghemite. J. Mater. Res. 12, 2175–2182 (1997)

    Article  ADS  Google Scholar 

  30. Bozorth, R.M., Tilden, E.F., Williams, A.J.: Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99, 1788–1798 (1955)

    Article  ADS  Google Scholar 

  31. Brabers, V.A.M.: Progress in spinel ferrite research. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, chapter 3, vol. 8, pp 189–324. Elsevier, Amsterdam (1995)

  32. Jiang, J.Z., Goya, G.F., Rechenberg, H.R.: Magnetic properties of nanostructured CuFe2 O 4. J. Phys. Condens. Matter 11, 4063–4070 (1999)

    Article  ADS  Google Scholar 

  33. Almessiere, M.A., Slimani, Y., Güngüneş, H., El Sayed, H.S., Baykal, A.: AC susceptibility and Mossbauer study of Ce3+ ion substituted SrFe12 O 19 nanohexaferrites. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.03.064

    Article  Google Scholar 

  34. Rondinone, A.J., Liu, C., Zhang, Z.J.: Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles. J. Phys. Chem. B 105, 7967–7971 (2001)

    Article  Google Scholar 

  35. Verma, K., Kumar, A., Varshney, D.: Effect of Zn and Mg do** on structural, dielectric and magnetic properties of tetragonal CuFe2 O 4. Curr. Appl. Phys. 13, 467–473 (2013)

    Article  ADS  Google Scholar 

  36. Baykal, A., Amir, Md., Güner, S., Sözeri, H.: Preparation and characterization of SPION functionalized via caffeic acid. J. Magn. Magn. Mater. 395, 199–204 (2015)

    Article  ADS  Google Scholar 

  37. Almessiere, M.A., Slimani, Y., El Sayed, H.S., Baykal, A.: Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.04.045

    Article  Google Scholar 

  38. Carrey, J., Mehdaoui, B., Respaud, M.: Simple models for dynamics hysteresis loop calculations of magnetic single domain nanoparticles: application to magnetic hyperthermia optimization. J. Appl. Phys. 109, 083921 (2011)

    Article  ADS  Google Scholar 

  39. Dobson, D., Linnett, J., Rahman, M.: Mössbauer studies of the charge transfer process in the system ZnxFe3−x O 4. J. Phys. Chem. Solids 31, 2727–2733 (1970)

    Article  ADS  Google Scholar 

  40. Najmoddin, N., Beitollahi, A., Muhammed, M., Ansari, N., Devlin, E., Mohseni, S.M., Rezaie, H., Niarchos, D., Åkerman, J., Toprak, M.S.: Effect of nanoconfinement on the formation, structural transition and magnetic behavior of mesoporous copper ferrite. J. Alloys Compd. 598, 191–197 (2014)

    Article  Google Scholar 

  41. Velinova, N., Petrova, T., Genova, I., Ivanova, I., Tsoncheva, T., Idakieva, V., Kuneva, B., Mitov, I.: Synthesis and Mössbauer spectroscopic investigation of copper-manganese ferrite catalysts for water-gas shift reaction and methanol decomposition. Mater. Res. Bull. 95, 556–562 (2017)

    Article  Google Scholar 

  42. Ristić, M., Hannoyer, B., Popović, S., Musić, S., Bajraktaraj, N.: Ferritization of copper ions in the Cu–Fe–O system. Mater. Sci. Eng. B 77, 73–82 (2000)

    Article  Google Scholar 

  43. Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H.S., Almessiere, M.A., Sözeri, H., Shirsath, S.E., Ercan, I., Baykal, A.: Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.05.028

    Article  Google Scholar 

  44. Ok, H.N., Baek, K.S., Lee, H.S., Kim, C.S.: Mössbauer study of Cu0.5Fe0.5Cr2 S 4. Phys. Rev. B 41, 62–64 (1990)

    Article  ADS  Google Scholar 

  45. Baldha, G., Kulkarni, R.: Mössbauer study of the spinel system GexCu1−xFe2 O 4. Solid State Commun. 49, 169–172 (1984)

    Article  ADS  Google Scholar 

  46. Thummer, K.P., Chhantbar, M.C., Modi, K.B., Baldha, G.J., Joshi, H.H.: Localized canted spin behaviour in ZnxMg1.5−xMn0.5FeO4 spinel ferrite system. J. Magn. Magn. Mater. 280, 23–30 (2004)

    Article  ADS  Google Scholar 

Download references

Funding

The Deanship of Scientific Research (DSR) and Institute for Research and Medical Consultations (IRMC) of Imam Abdulrahman Bin Faisal University are highly acknowledged for providing the financial assistance for this study (project application number: 2017-605-IRMC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Gungunes, H., Slimani, Y. et al. Mössbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles. J Supercond Nov Magn 32, 557–564 (2019). https://doi.org/10.1007/s10948-018-4733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4733-5

Keywords

Navigation