Log in

Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

The potato steroidal glycoalkaloids (SGAs) are important components of plant resistance against pests and pathogens but can be toxic to humans at high levels. SGAs derive their toxicity from anticholinesterase activity affecting the central nervous system and the disruptive effects on cell membrane integrity affecting the digestive system and other organs. Accordingly, current safety regulations limit their content in the edible tuber to 20 mg per 100 g fresh weight. SGA composition and level are genetically determined, with unfavourable growth conditions and inappropriate postharvest management inducing the accumulation of SGAs at levels in the tubers of “safe” cultivars beyond the maximum level set by the industry. Hence, genetic alteration of potato to prevent toxic levels of SGAs in tubers is highly desirable. At the same time, maintaining high SGA levels in other plant organs will contribute to plant resistance against pathogen and pest attacks. To this end, SGA biosynthesis and degradation should be manipulated precisely to exploit tissue-specific expression rather than whole-plant suppression of SGA production, to produce potato cultivars with SGA content enriched in the foliage but diminished in the edible tubers. Only a few details are known about the SGA biosynthetic pathway, its genes and intermediates. Research on factors that regulate SGA biosynthesis and catabolism as well as searches for genetic markers linked to total and specific SGA levels have only recently been pursued. The present review summarizes current data on these issues to encourage further discussion on SGA manipulation for safer food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FPP:

2-trans,6-trans-Farnesyl diphosphate

HMGR:

3-hydroxy-3-methylglutaryl coenzyme A reductase

SGA:

steroidal glycoalkaloid

SS:

squalene synthase

References

  • Abreu P, Relva A, Matthew S, Gomes Z, Morais Z (2007) High-performance liquid chromatographic determination of glycoalkaloids in potatoes from conventional, integrated, and organic crop systems. Food Control 18:40–44

    Article  CAS  Google Scholar 

  • Arnqvist L, Dutta PC, Jonsson L, Sitbon F (2003) Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol 131:1792–1799

    Article  PubMed  CAS  Google Scholar 

  • Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP (1988) Fertile interspecific somatic hybrids of Solanum: a novel source of resistance to Erwinia soft rot. Phytopathology 78:1216–1220

    Article  Google Scholar 

  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y (2000) Glycoalkaloids in potato tubers: the effect of variety and drought stress on the alpha-solanine and alpha-chaconine contents of potatoes. J Sci Food Agric 80:2096–2100

    Article  CAS  Google Scholar 

  • Benveniste P (2004) Biosynthesis and accumulation of sterols. Annu Rev Plant Biol 55:429–457

    Article  PubMed  CAS  Google Scholar 

  • Bergenstråhle A, Tillberg E, Jonsson L (1992) Regulation of glycoalkaloid accumulation in potato tuber disks. J Plant Physiol 140:269–275

    Google Scholar 

  • Bergenstråhle A, Borga P, Jonsson MV (1996) Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry 41:155–161

    Article  Google Scholar 

  • Boluarte-Medina T, Fogelman E, Chani E, Miller AR, Levin I, Levy D, Veilleux RE (2002) Identification of molecular markers associated with leptine in reciprocal backcross families of diploid potato. Theor Appl Genet 105:1010–1018

    Article  CAS  Google Scholar 

  • Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892

    Article  PubMed  CAS  Google Scholar 

  • Bushway AA, Bushway RJ, Kim CH (1988) Isolation, partial purification and characterization of a potato peel glycoalkaloid glycosidase. Am Potato J 65:621–631

    Article  CAS  Google Scholar 

  • Choi D, Ward BL, Bostock RM (1992) Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. Plant Cell 4:1333–1344

    Article  PubMed  CAS  Google Scholar 

  • Choi D, Bostock RM, Avdiushko S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA 91:2329–2333

    Article  PubMed  CAS  Google Scholar 

  • Dale MFB, Griffiths DW, Bain H, Todd D (1993) Glycoalkaloid increase in Solanum tuberosum on exposure to light. Ann Appl Biol 123:411–418

    Article  CAS  Google Scholar 

  • Deahl KL, Cantelo WW, Sinden SL, Sanford LL (1991) The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of four Solanum chacoense clones. Am Potato J 68:659–666

    Article  CAS  Google Scholar 

  • Deahl KL, Sinden SL, Young RJ (1993) Evaluation of wild tuber bearing Solanum accessions for foliar glycoalkaloid level and composition. Am Potato J 70:61–69

    Article  CAS  Google Scholar 

  • Eltayeb EA, Al-Ansari AS, Roddick JG (1997) Changes in the steroidal alkaloid solasodine during development of Solanum nigrum and Solanum incanum. Phytochemistry 46:489–494

    Article  CAS  Google Scholar 

  • Fewell AM, Roddick JG (1997) Potato glycoalkaloid impairment of fungal development. Mycol Res 101:597–603

    Article  CAS  Google Scholar 

  • Friedman M (2006) Potato glycoalkaloids and metabolites: roles in the plant and in the diet. J Agric Food Chem 54:8655–8681

    Article  PubMed  CAS  Google Scholar 

  • Friedman M, Dao L (1992) Distribution of glycoalkaloids in potato plants and commercial potato products. J Agric Food Chem 40:419–423

    Article  CAS  Google Scholar 

  • Friedman M, McDonald GM (1997) Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Friedman M, Henika PR, Mackey BE (1996) Feeding of potato, tomato and eggplant alkaloids affects food consumption and body and liver weights in mice. J Nutr 126:989–999

    PubMed  CAS  Google Scholar 

  • Greenhagen BT, Schoenbeck MA, Yeo YS, Chappell J (2003) The chemical wizardry of isoprenoid metabolism in plants. In: Romeo JT (ed) Integrative phytochemistry: from ethnobotany to molecular ecology. Pergamon, Amsterdam, pp 231–251

    Chapter  Google Scholar 

  • Gregory P, Sinden SL, Tingey WM, Osman SF (1980) Glycoalkaloids of some wild potato species differing in insect resistance. Am Potato J 57:478–478

    Google Scholar 

  • Gregory P, Sinden SL, Osman SF, Tingey WM, Chessin DA (1981) Glycoalkaloids of wild, tuber-bearing Solanum species. J Agric Food Chem 29:1212–1215

    Article  CAS  Google Scholar 

  • Grunenfelder LA, Knowles LO, Hiller LK, Knowles NR (2006) Glycoalkaloid development during greening of fresh market potatoes (Solanum tuberosum L.). J Agric Food Chem 54:5847–5854

    Article  PubMed  CAS  Google Scholar 

  • Hajslova J, Schulzova V, Slanina P, Janne K, Hellenas KE, Andersson C (2005) Quality of organically and conventionally grown potatoes: four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit Contam 22:514–534

    Article  PubMed  CAS  Google Scholar 

  • Heftmann E (1983) Biogenesis of steroids in Solanaceae. Phytochemistry 22:1843–1860

    Article  CAS  Google Scholar 

  • Holland HL, Taylor GJ (1979) Transformations of steroids and the steroidal alkaloid, solanine, by Phytophthora infestans. Phytochemistry 18:437–440

    Article  CAS  Google Scholar 

  • Hutvágner G, Bánfalvi Z, Milánkovics I, Silhavy D, Polgár Z, Horváth S, Wolters P, Nap J-P (2001) Molecular markers associated with leptinine production are located on chromosome 1 in Solanum chacoense. Theor Appl Genet 102:1065–1071

    Article  Google Scholar 

  • Kaneko K, Watanabe M, Kawakoshi Y, Mitsuhashi H (1971) Etioline as important precursor in solanidine biosynthesis in Veratrum grandiflorum; (25S)-22,26-iminocholesta-5,22(n)-diene-3β,16α-diol. Tetrahedron Lett 12:4251–4254

    Article  Google Scholar 

  • Kaneko K, Tanaka MW, Mitsuhashi H (1976) Origin of nitrogen in biosynthesis of solanidine by Veratrum grandiflorum. Phytochemistry 15:1391–1393

    Article  CAS  Google Scholar 

  • Kaneko K, Tanaka MW, Mitsuhashi H (1977) Dormantinol, a possible precursor in solanidine biosynthesis, from budding Veratrum grandiflorum. Phytochemistry 16:1247–1251

    Article  CAS  Google Scholar 

  • Kolesnikova MD, **ong QB, Lodeiro S, Hua L, Matsuda SPT (2006) Lanosterol biosynthesis in plants. Arch Biochem Biophys 447:87–95

    Article  PubMed  CAS  Google Scholar 

  • Korpan YI, Nazarenko EA, Skryshevskaya IV, Martelet C, Jaffrezic-Renault N, El’skaya AV (2004) Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 22:147–151

    Article  PubMed  CAS  Google Scholar 

  • Kozukue N, Misoo S, Yamada T, Kamijima O, Friedman M (1999) Inheritance of morphological characters and glycoalkaloids in potatoes of somatic hybrids between dihaploid Solanum acaule and tetraploid Solanum tuberosum. J Agric Food Chem 47:4478–4483

    Article  PubMed  CAS  Google Scholar 

  • Krits P, Fogelman E, Ginzberg I (2007) Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta 227:143–150

    Article  PubMed  CAS  Google Scholar 

  • Lafta AM, Lorenzen JH (2000) Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Am Soc Hortic Sci 125:563–566

    CAS  Google Scholar 

  • Laurila J, Laakso I, Valkonen JPT, Hiltunen R, Pehu E (1996) Formation of parental-type and novel glycoalkaloids in somatic hybrids between Solanum brevidens and S. tuberosum. Plant Sci 118:145–155

    Article  CAS  Google Scholar 

  • Lawson DR, Veilleux RE, Miller AR (1993) Biochemistry and genetics of S. chacoense steroidal alkaloids: natural resistance factors to the Colorado potato beetle. Curr Top Bot Res 1:335–352

    Google Scholar 

  • Lee YY, Hashimoto F, Yahara S, Nohara T, Yoshida N (1994) Studies on the solanaceous plants 29. Steroidal glycosides from Solanum dulcamara. Chem Pharm Bull 42:707–709

    CAS  Google Scholar 

  • Maga JA (1980) Potato glycoalkaloids. Crit Rev Food Sci Nutr 12:371–404

    Article  PubMed  CAS  Google Scholar 

  • Maga JA (1994) Glycoalkaloids in Solanaceae. Food Rev Int 10:385–418

    CAS  Google Scholar 

  • McCue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR (2005) Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci 168:267–273

    Article  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Whitworth J, Maccree MM, Rockhold DR, Stewart D, Davies HV, Belknap WR (2006) The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67:1590–1597

    Article  PubMed  CAS  Google Scholar 

  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR (2007) Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68:327–334

    Article  PubMed  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  PubMed  CAS  Google Scholar 

  • Morris SC, Petermann JB (1985) Genetic and environmental effects of levels of glycoalkaloids in cultivars of potato (Solanum tuberosum L.). Food Chem 18:271–282

    Article  CAS  Google Scholar 

  • Osman SF, Herb SF, Fitzpatrick TJ, Sinden SL (1976) Commersonine, a new glycoalkaloid from two Solanum species. Phytochemistry 15:1065–1067

    Article  CAS  Google Scholar 

  • Osman SF, Johns TA, Price KR (1986) Sisunine, a glycoalkaloid found in hybrids between Solanum acaule and Solanum x ajanhuiri. Phytochemistry 25:967–968

    Article  CAS  Google Scholar 

  • Osman S, Sinden SL, Deahl K, Moreau R (1987) The metabolism of solanidine by microsomal fractions from Solanum chacoense. Phytochemistry 26:3163

    Article  CAS  Google Scholar 

  • Parnell A, Bhuva VS, Bintcliffe EJB (1984) The glycoalkaloid content of potato varieties. J Natl Inst Agric Bot UK 16:535–541

    CAS  Google Scholar 

  • Pehu E, Gibson RW, Jones MGK, Karp A (1990) Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci 69:95–101

    Article  Google Scholar 

  • Percival G, Dixon G, Sword A (1994) Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric 66:139–144

    Article  CAS  Google Scholar 

  • Percival GC, Karim MS, Dixon GR (1998) Influence of light enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var. coeruleum. Plant Pathol 47:665–670

    Article  CAS  Google Scholar 

  • Petersen HW, Molgaard P, Nyman U, Olsen CE (1993) Chemotaxonomy of the tuber bearing Solanum species, subsection potato (Solanaceae). Biochem Syst Ecol 21:629–644

    Article  CAS  Google Scholar 

  • Rayburn JR, Bantle JA, Friedman M (1994) Role of carbohydrate side-chains of potato glycoalkaloids in developmental toxicity. J Agric Food Chem 42:1511–1515

    Article  CAS  Google Scholar 

  • Rayburn JR, Friedman M, Bantle JA (1995) Synergistic interaction of glycoalkaloids α-chaconine and α-solanine on developmental toxicity in Xenopus embryos. Food Chem Toxicol 33:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Reeve RM, Hautala E, Weaver ML (1969) Anatomy and compositional variation within potatoes 1. Developmental histology of the tuber. Am Potato J 46:361–373

    Article  Google Scholar 

  • Ripperge H, Moritz W, Schreibe K (1971) Solanum alkaloids: biosynthesis of Solanum alkaloids from cycloartenol or lanosterol. Phytochemistry 10:2699–2704

    Article  Google Scholar 

  • Rokka V-M, Xu Y-S, Kankila J, Kuusela A, Pulli S, Pehu E (1994) Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica 80:207

    Article  CAS  Google Scholar 

  • Ronning CM, Sanford LL, Kobayashi RS, Kowalski SP (1998) Foliar leptine production in segregating F1, inter-F1, and backcross families of Solanum chacoense Bitter. Am J Potato Res 75:137–143

    CAS  Google Scholar 

  • Ronning CM, Stommel JR, Kowalski SP, Sanford LL, Kobayashi RS, Pineada O (1999) Identification of molecular markers associated with leptine production in a population of Solanum chacoense Bitter. Theor Appl Genet 98:39–46

    Article  CAS  Google Scholar 

  • Ronning CM, Kowalski SP, Sanford LL, Stommel JR (2000) Geographical variation of solanidane aglycone glycoalkaloids in the wild potato species Solanum chacoense Bitter. Genet Res Crop Evol 47:359–369

    Article  Google Scholar 

  • Sagredo B, Lafta A, Casper H, Lorenzen J (2006) Map** of genes associated with leptine content of tetraploid potato. Theor Appl Genet 114:131–142

    Article  PubMed  CAS  Google Scholar 

  • Sanford LL, Sinden SL (1972) Inheritance of potato glycoalkaloids. Am Potato J 49:209–217

    Article  CAS  Google Scholar 

  • Sanford LL, Deahl KL, Sinden SL, Ladd TL (1992) Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance. Am Potato J 69:693–703

    Article  CAS  Google Scholar 

  • Sanford LL, Deahl KL, Sinden SL (1994) Glycoalkaloid content in foliage of hybrid and backcross populations from a Solanum tuberosum × S. chacoense cross. Am Potato J 71:225–235

    Article  CAS  Google Scholar 

  • Sanford LL, Deahl KL, Sinden SL, Kobayashi RS (1995) Glycoalkaloid content in tubers of hybrid and backcross populations from a Solanum tuberosum × S. chacoense cross. Am Potato J 72:261–271

    Article  CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1996) Segregation of leptines and other glycoalkaloids in Solanum tuberosum (4x) × S. chacoense (4x) crosses. Am Potato J 73:21–33

    Article  CAS  Google Scholar 

  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL (1997) Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J 74:15–21

    Article  CAS  Google Scholar 

  • Sarquis JI, Coria NA, Aguilar I, Rivera A (2000) Glycoalkaloid content in Solanum species and hybrids from a breeding program for resistance to late blight (Phytophthora infestans). Am J Potato Res 77:295–302

    Article  CAS  Google Scholar 

  • Schaeffer A, Bronner R, Benveniste P, Schaller H (2001) The ratio of campesterol to sitosterol that modulates growth in Arabidopsis is controlled by STEROL METHYLTRANSFERASE 2;1. Plant J 25:605–615

    Article  PubMed  CAS  Google Scholar 

  • Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476

    Article  PubMed  CAS  Google Scholar 

  • Schreiber K (1968) Steroid alkaloids: Solanum group. In: Manske RHF (ed) The alkaloids. Academic, New York, pp 1–192

    Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Shih M-J, Kuc J (1974) α- and β-Solamarine in Kennebec Solanum tuberosum leaves and aged tuber slices. Phytochemistry 13:997–1000

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Osman SF (1980) Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter. Am Potato J 57:331–343

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Webb RE (1984) Genetic and environmental control of potato glycoalkaloids. Am Potato J 61:141–156

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Deahl KL (1986) Segregation of leptine glycoalkaloids in Solanum chacoense Bitter. J Agric Food Chem 34:372–377

    Article  CAS  Google Scholar 

  • Sinden SL, Sanford LL, Cantelo WW, Deahl KL (1988) Bioassays of segregating plants. A strategy for studying chemical defences. J Chem Ecol 14:1941–1950

    Article  CAS  Google Scholar 

  • Smith DB, Roddick JG, Jones JL (1996) Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol 7:126–131

    Article  CAS  Google Scholar 

  • Stankovic M, Stojanovic O, Kobilarov N (1990) Unsaponifiable lipids from haulm and tuber sprouts of potato (Solanum tuberosum L). Potato Res 33:459–464

    Article  CAS  Google Scholar 

  • Suzuki M, Muranaka T (2007) Molecular genetics of plant sterol backbone synthesis. Lipids 42:47–54

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, **ang T, Ohyama K, Seki H, Saito K, Muranaka T, Hayashi H, Katsube Y, Kushiro T, Shibuya M, Ebizuka Y (2006) Lanosterol synthase in dicotyledonous plants. Plant Cell Physiol 47:565–571

    Article  PubMed  CAS  Google Scholar 

  • Swain AP, Fitzpatrick TJ, Talley EA, Herb SF, Osman SF (1978) Enzymatic hydrolysis of α-chaconine and α-solanine. Phytochemistry 17:800–801

    Article  CAS  Google Scholar 

  • Väänänen D, Ikonen T, Rokka V-M, Kuronen P, Serimaa R, Ollilainen V (2005) Influence of incorporated wild Solanum genomes on potato properties in terms of starch nanostructure and glycoalkaloid content. J Agric Food Chem 53:5313–5325

    Article  PubMed  CAS  Google Scholar 

  • Väänänen T, Ikonen T, Rokka V-M, Kuronen P, Serimaa R, Ollilainen V (2006) Correction. Influence of incorporated wild Solanum genomes on potato properties in terms of starch nanostructure and glycoalkaloid content. J Agric Food Chem 2005, 53, 5313. J Agric Food Chem 54:4496–4497

    Article  CAS  Google Scholar 

  • Valkonen JPT, Keskitalo M, Vasara T, Pietilä L (1996) Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci 15:1–20

    Article  CAS  Google Scholar 

  • van Dam J, Levin I, Struik PC, Levy D (2003) Identification of epistatic interaction affecting glycoalkaloid content in tubers of tetraploid potato (Solanum tuberosum L.). Euphytica 134:353–360

    Article  Google Scholar 

  • van Gelder WMJ, Scheffer JJC (1991) Transmission of steroidal glycoalkaloids from Solanum vernei to the cultivated potato. Phytochemistry 30:165–168

    Article  Google Scholar 

  • Veilleux RE, Miller AR (1998) Hybrid breakdown in the F1, between Solanum chacoense and S. phureja and gene transfer for leptine biosynthesis. J Am Society Hortic Sci 123:854–858

    CAS  Google Scholar 

  • Weltring KM, Wessels J, Geyer R (1997) Metabolism of the potato saponins α-chaconine and α-solanine by Gibberella pulicaris. Phytochemistry 46:1005–1009

    Article  CAS  Google Scholar 

  • Winkel BSJ (2004) Metabolic channeling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Wszelaki AL, Delwiche JF, Walker SD, Liggett RE, Scheerens JC, Kleinhenz MD (2005) Sensory quality and mineral and glycoalkaloid concentrations in organically and conventionally grown redskin potatoes (Solanum tuberosum). J Sci Food Agric 85:720–726

    Article  CAS  Google Scholar 

  • Yencho GC, Kowalski SP, Kobayashi RS, Sinden SL, Bonierbale MW, Deahl KL (1998) QTL map** of foliar glycoalkaloid aglycones in Solanum tuberosum × S. berthaultii potato progenies: quantitative variation and plant secondary metabolism. Theor Appl Genet 97:563–574

    Article  CAS  Google Scholar 

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    PubMed  CAS  Google Scholar 

  • Zook MN, Kuc JA (1991) Induction of sesquiterpene cyclase and suppression of squalene synthetase activity in elicitor treated or fungal infected potato tuber tissue. Physiol Mol Plant Pathol 39:377–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idit Ginzberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzberg, I., Tokuhisa, J.G. & Veilleux, R.E. Potato Steroidal Glycoalkaloids: Biosynthesis and Genetic Manipulation. Potato Res. 52, 1–15 (2009). https://doi.org/10.1007/s11540-008-9103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-008-9103-4

Keywords

Navigation