Log in

Non-Dopaminergic Treatments for Motor Control in Parkinson’s Disease: An Update

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Glutamatergic, noradrenergic, serotonergic, and cholinergic systems play a critical role in the basal ganglia circuitry. Targeting these non-dopaminergic receptors remains a focus of ongoing research to improve Parkinson’s disease (PD) motor symptoms, without the potential side effects of dopamine replacement therapy. This review updates advancements in non-dopaminergic treatments for motor control in PD since 2013. To date, no non-dopaminergic selective drug has shown significant long-term efficacy as monotherapy in PD. The largest area of development in non-dopaminergic targets has been for motor complications of dopamine replacement therapy (motor fluctuations and dyskinesia). For treatment of motor fluctuations, safinamide, zonisamide, and istradefylline are currently approved, and novel glutamatergic and serotonergic drugs are in development. Long-acting formulations of amantadine are approved for treating dyskinesia. Several non-dopaminergic drugs have failed to show anti-dyskinetic efficacy, while some are still in development. Non-dopaminergic targets are also being pursued to treat specific motor symptoms of PD. For example, CX-8998 (a calcium channel modulator) is being evaluated for PD tremor and rivastigmine may improve gait dysfunction in PD. Drug repurposing continues to be a key strategy for non-dopaminergic targets in PD, but the field needs to increase discovery and availability of such drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fox SH. Non-dopaminergic treatments for motor control in Parkinson's disease. Drugs. 2013;73(13):1405–15. https://doi.org/10.1007/s40265-013-0105-4.

    Article  PubMed  CAS  Google Scholar 

  2. Freitas ME, Fox SH. Nondopaminergic treatments for Parkinson's disease: current and future prospects. Neurodegener Dis Manag. 2016;6(3):249–68. https://doi.org/10.2217/nmt-2016-0005.

    Article  PubMed  PubMed Central  Google Scholar 

  3. O'Gorman Tuura RL, Baumann CR, Baumann-Vogel H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front Neurol. 2018;9:806. https://doi.org/10.3389/fneur.2018.00806.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70. https://doi.org/10.1002/mds.22340.

    Article  PubMed  Google Scholar 

  5. Goetz CG, Nutt JG, Stebbins GT. The Unified Dyskinesia Rating Scale: presentation and clinimetric profile. Mov Disord. 2008;23(16):2398–403. https://doi.org/10.1002/mds.22341.

    Article  PubMed  Google Scholar 

  6. Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord. 2000;6(3):165–70. https://doi.org/10.1016/s1353-8020(99)00062-0.

    Article  PubMed  CAS  Google Scholar 

  7. Prokic EJ, Stanford IM, Woodhall GL, Williams AC, Hall SD. Bradykinesia is driven by cumulative beta power during continuous movement and alleviated by gabaergic modulation in Parkinson's disease. Front Neurol. 2019;10:1298. https://doi.org/10.3389/fneur.2019.01298.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson's disease: filling the bench-to-bedside gap. Lancet Neurol. 2010;9(11):1106–17. https://doi.org/10.1016/S1474-4422(10)70218-0.

    Article  PubMed  CAS  Google Scholar 

  9. Duty S. Targeting glutamate receptors to tackle the pathogenesis, clinical symptoms and levodopa-induced dyskinesia associated with Parkinson's disease. CNS Drugs. 2012;26(12):1017–32. https://doi.org/10.1007/s40263-012-0016-z.

    Article  PubMed  CAS  Google Scholar 

  10. Iderberg H, Maslava N, Thompson AD, Bubser M, Niswender CM, Hopkins CR, et al. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology. 2015;95:121–9. https://doi.org/10.1016/j.neuropharm.2015.02.023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Charvin D, Di Paolo T, Bezard E, Gregoire L, Takano A, Duvey G, et al. An mGlu4-positive allosteric modulator alleviates Parkinsonism in primates. Mov Disord. 2018;33(10):1619–31. https://doi.org/10.1002/mds.27462.

    Article  PubMed  CAS  Google Scholar 

  12. Pisani A, Bonsi P, Centonze D, Gubellini P, Bernardi G, Calabresi P. Targeting striatal cholinergic interneurons in Parkinson's disease: focus on metabotropic glutamate receptors. Neuropharmacology. 2003;45(1):45–56. https://doi.org/10.1016/s0028-3908(03)00137-0.

    Article  PubMed  CAS  Google Scholar 

  13. Pourmirbabaei S, Dolatshahi M, Rahmani F. Pathophysiological clues to therapeutic applications of glutamate mGlu5 receptor antagonists in levodopa-induced dyskinesia. Eur J Pharmacol. 2019;855:149–59. https://doi.org/10.1016/j.ejphar.2019.05.004.

    Article  PubMed  CAS  Google Scholar 

  14. Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and l-DOPA-induced dyskinesia. Neurosci Biobehav Rev. 2018;92:67–82. https://doi.org/10.1016/j.neubiorev.2018.05.021.

    Article  PubMed  CAS  Google Scholar 

  15. Bordia T, Perez XA, Heiss J, Zhang D, Quik M. Optogenetic activation of striatal cholinergic interneurons regulates l-dopa-induced dyskinesias. Neurobiol Dis. 2016;91:47–58. https://doi.org/10.1016/j.nbd.2016.02.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Di Paolo T, Gregoire L, Feuerbach D, Elbast W, Weiss M, Gomez-Mancilla B. AQW051, a novel and selective nicotinic acetylcholine receptor alpha7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys. Parkinsonism Relat Disord. 2014;20(11):1119–23. https://doi.org/10.1016/j.parkreldis.2014.05.007.

    Article  PubMed  Google Scholar 

  17. Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, et al. alpha7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord. 2015;30(14):1901–11. https://doi.org/10.1002/mds.26453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci. 2006;29(11):647–54. https://doi.org/10.1016/j.tins.2006.09.004.

    Article  PubMed  CAS  Google Scholar 

  19. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, et al. Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol. 1998;43(4):507–13. https://doi.org/10.1002/ana.410430415.

    Article  PubMed  CAS  Google Scholar 

  20. Rascol O, Perez-Lloret S, Ferreira JJ. New treatments for levodopa-induced motor complications. Mov Disord. 2015;30(11):1451–60. https://doi.org/10.1002/mds.26362.

    Article  PubMed  CAS  Google Scholar 

  21. Lewitt PA. Norepinephrine: the next therapeutics frontier for Parkinson's disease. Transl Neurodegener. 2012;1(1):4. https://doi.org/10.1186/2047-9158-1-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tohgi H, Abe T, Takahashi S. The effects of l-threo-3,4-dihydroxyphenylserine on the total norepinephrine and dopamine concentrations in the cerebrospinal fluid and freezing gait in Parkinsonian patients. J Neural Transm Park Dis Dement Sect. 1993;5(1):27–34. https://doi.org/10.1007/BF02260912.

    Article  PubMed  CAS  Google Scholar 

  23. Espay AJ, LeWitt PA, Kaufmann H. Norepinephrine deficiency in Parkinson's disease: the case for noradrenergic enhancement. Mov Disord. 2014;29(14):1710–9. https://doi.org/10.1002/mds.26048.

    Article  PubMed  CAS  Google Scholar 

  24. Carta M, Carlsson T, Kirik D, Bjorklund A. Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain. 2007;130(Pt 7):1819–33. https://doi.org/10.1093/brain/awm082.

    Article  PubMed  Google Scholar 

  25. Nicholson SL, Brotchie JM. 5-hydroxytryptamine (5-HT, serotonin) and Parkinson's disease—opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur J Neurol. 2002;9(Suppl 3):1–6. https://doi.org/10.1046/j.1468-1331.9.s3.1.x.

    Article  PubMed  Google Scholar 

  26. Huot P, Fox SH. The serotonergic system in motor and non-motor manifestations of Parkinson's disease. Exp Brain Res. 2013;230(4):463–76. https://doi.org/10.1007/s00221-013-3621-2.

    Article  PubMed  CAS  Google Scholar 

  27. Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology. 2016;106:74–84. https://doi.org/10.1016/j.neuropharm.2015.08.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The pharmacology of l-DOPA-induced dyskinesia in Parkinson's disease. Pharmacol Rev. 2013;65(1):171–222. https://doi.org/10.1124/pr.111.005678.

    Article  PubMed  CAS  Google Scholar 

  29. Benarroch E. Endocannabinoids in basal ganglia circuits: implications for Parkinson disease. Neurology. 2007;69(3):306–9. https://doi.org/10.1212/01.wnl.0000267407.79757.75.

    Article  PubMed  Google Scholar 

  30. Deleu D, Northway MG, Hanssens Y. Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson's disease. Clin Pharmacokinet. 2002;41(4):261–309. https://doi.org/10.2165/00003088-200241040-00003.

    Article  PubMed  CAS  Google Scholar 

  31. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, et al. Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology. 2017;88(23):2198–206. https://doi.org/10.1212/WNL.0000000000004003.

    Article  PubMed  CAS  Google Scholar 

  32. Postuma RB, Anang J, Pelletier A, Joseph L, Moscovich M, Grimes D, et al. Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): a randomized trial. Neurology. 2017;89(17):1795–803. https://doi.org/10.1212/WNL.0000000000004568.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alborghetti M, Nicoletti F. Different generations of type-B monoamine oxidase inhibitors in Parkinson's disease: from bench to bedside. Curr Neuropharmacol. 2019;17(9):861–73. https://doi.org/10.2174/1570159X16666180830100754.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pisano CA, Brugnoli A, Novello S, Caccia C, Keywood C, Melloni E, et al. Safinamide inhibits in vivo glutamate release in a rat model of Parkinson's disease. Neuropharmacology. 2020;167:108006. https://doi.org/10.1016/j.neuropharm.2020.108006.

    Article  PubMed  CAS  Google Scholar 

  35. Yamamura S, Ohoyama K, Nagase H, Okada M. Zonisamide enhances delta receptor-associated neurotransmitter release in striato-pallidal pathway. Neuropharmacology. 2009;57(3):322–31. https://doi.org/10.1016/j.neuropharm.2009.05.005.

    Article  PubMed  CAS  Google Scholar 

  36. Maeda TTD, Yamazaki T, Satoh Y, Nagata K. Zonisamide in the early stage of Parkinson's disease. Neurol Clin Neurosci. 2014;4(3):127–30.

    Google Scholar 

  37. Murata MHK, Kanazawa I, Shirakura K, Kochi K, Shimazu R, et al. Randomized placebo-controlled trial of zonisamide in patients with Parkinson's disease. Neurol Clin Neurosci. 2016;1(4):10–5.

    Article  CAS  Google Scholar 

  38. Zhao S, Cheng R, Zheng J, Li Q, Wang J, Fan W, et al. A randomized, double-blind, controlled trial of add-on therapy in moderate-to-severe Parkinson's disease. Parkinsonism Relat Disord. 2015;21(10):1214–8. https://doi.org/10.1016/j.parkreldis.2015.08.023.

    Article  PubMed  Google Scholar 

  39. Quik M, Bordia T, Zhang D, Perez XA. Nicotine and nicotinic receptor drugs: potential for Parkinson's disease and drug-induced movement disorders. Int Rev Neurobiol. 2015;124:247–71. https://doi.org/10.1016/bs.irn.2015.07.005.

    Article  PubMed  CAS  Google Scholar 

  40. Villafane G, Thiriez C, Audureau E, Straczek C, Kerschen P, Cormier-Dequaire F, et al. High-dose transdermal nicotine in Parkinson's disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur J Neurol. 2018;25(1):120–7. https://doi.org/10.1111/ene.13474.

    Article  PubMed  CAS  Google Scholar 

  41. Fackrell R, Carroll CB, Grosset DG, Mohamed B, Reddy P, Parry M, et al. Noninvasive options for 'wearing-off' in Parkinson's disease: a clinical consensus from a panel of UK Parkinson's disease specialists. Neurodegener Dis Manag. 2018;8(5):349–60. https://doi.org/10.2217/nmt-2018-0020.

    Article  PubMed  Google Scholar 

  42. Schapira AH, Fox SH, Hauser RA, Jankovic J, Jost WH, Kenney C, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations: a randomized clinical trial. JAMA Neurol. 2017;74(2):216–24. https://doi.org/10.1001/jamaneurol.2016.4467.

    Article  PubMed  Google Scholar 

  43. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt M, Chirilineau D, et al. Randomized trial of safinamide add-on to levodopa in Parkinson's disease with motor fluctuations. Mov Disord. 2014;29(2):229–37. https://doi.org/10.1002/mds.25751.

    Article  PubMed  CAS  Google Scholar 

  44. Borgohain R, Szasz J, Stanzione P, Meshram C, Bhatt MH, Chirilineau D, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson's disease. Mov Disord. 2014;29(10):1273–80. https://doi.org/10.1002/mds.25961.

    Article  PubMed  CAS  Google Scholar 

  45. Murata M, Hasegawa K, Kanazawa I, Fukasaka J, Kochi K, Shimazu R, et al. Zonisamide improves wearing-off in Parkinson's disease: a randomized, double-blind study. Mov Disord. 2015;30(10):1343–50. https://doi.org/10.1002/mds.26286.

    Article  PubMed  CAS  Google Scholar 

  46. Tao Y, Liang G. Efficacy of adenosine A2A receptor antagonist istradefylline as augmentation for Parkinson's disease: a meta-analysis of randomized controlled trials. Cell Biochem Biophys. 2015;71(1):57–62. https://doi.org/10.1007/s12013-014-0162-7.

    Article  PubMed  CAS  Google Scholar 

  47. Mizuno Y, Kondo T, Japanese Istradefylline Study G. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson's disease. Mov Disord. 2013;28(8):1138–41. https://doi.org/10.1002/mds.25418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kondo T, Mizuno Y. A long-term study of istradefylline safety and efficacy in patients with Parkinson disease. Clin Neuropharmacol. 2015;38(2):41–6. https://doi.org/10.1097/WNF.0000000000000073.

    Article  PubMed  CAS  Google Scholar 

  49. Pourcher E, Fernandez HH, Stacy M, Mori A, Ballerini R, Chaikin P. Istradefylline for Parkinson's disease patients experiencing motor fluctuations: results of the KW-6002-US-018 study. Parkinsonism Relat Disord. 2012;18(2):178–84. https://doi.org/10.1016/j.parkreldis.2011.09.023.

    Article  PubMed  Google Scholar 

  50. Kyowa Hakko Kirin Announces Top-Line Results of Global Phase 3 Trial of KW-6002 (Istradefylline) for Parkinson's Disease. https://www.kyowakirin.com/media_center/news_releases/2016/e20161213_01.html.2016.

  51. Voelker R. Add-on drug approved for "off" episodes of Parkinson disease. JAMA. 2019;322(13):1246. https://doi.org/10.1001/jama.2019.15403.

    Article  PubMed  Google Scholar 

  52. Hauser RA, Cantillon M, Pourcher E, Micheli F, Mok V, Onofrj M, et al. Preladenant in patients with Parkinson's disease and motor fluctuations: a phase 2, double-blind, randomised trial. Lancet Neurol. 2011;10(3):221–9. https://doi.org/10.1016/S1474-4422(11)70012-6.

    Article  PubMed  CAS  Google Scholar 

  53. Hattori N, Kikuchi M, Adachi N, Hewitt D, Huyck S, Saito T. Adjunctive preladenant: a placebo-controlled, dose-finding study in Japanese patients with Parkinson's disease. Parkinsonism Relat Disord. 2016;32:73–9. https://doi.org/10.1016/j.parkreldis.2016.08.020.

    Article  PubMed  Google Scholar 

  54. Hauser RA, Stocchi F, Rascol O, Huyck SB, Capece R, Ho TW, et al. Preladenant as an adjunctive therapy with levodopa in Parkinson disease: two randomized clinical trials and lessons learned. JAMA Neurol. 2015;72(12):1491–500. https://doi.org/10.1001/jamaneurol.2015.2268.

    Article  PubMed  Google Scholar 

  55. Hauser RA, Olanow CW, Kieburtz KD, Pourcher E, Docu-Axelerad A, Lew M, et al. Tozadenant (SYN115) in patients with Parkinson's disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol. 2014;13(8):767–76. https://doi.org/10.1016/S1474-4422(14)70148-6.

    Article  PubMed  CAS  Google Scholar 

  56. Poewe W, Mahlknecht P, Jankovic J. Emerging therapies for Parkinson's disease. Curr Opin Neurol. 2012;25(4):448–59. https://doi.org/10.1097/WCO.0b013e3283542fde.

    Article  PubMed  CAS  Google Scholar 

  57. Pinna A. Adenosine A2A receptor antagonists in Parkinson's disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs. 2014;28(5):455–74. https://doi.org/10.1007/s40263-014-0161-7.

    Article  PubMed  CAS  Google Scholar 

  58. Fox SH, Katzenschlager R, Lim SY, Barton B, de Bie RMA, Seppi K, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson's disease. Mov Disord. 2018;33(8):1248–66. https://doi.org/10.1002/mds.27372.

    Article  PubMed  CAS  Google Scholar 

  59. Ory-Magne F, Corvol JC, Azulay JP, Bonnet AM, Brefel-Courbon C, Damier P, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014;82(4):300–7. https://doi.org/10.1212/WNL.0000000000000050.

    Article  PubMed  CAS  Google Scholar 

  60. Pahwa R, Tanner CM, Hauser RA, Sethi K, Isaacson S, Truong D, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson's disease (EASED Study). Mov Disord. 2015;30(6):788–95. https://doi.org/10.1002/mds.26159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pahwa R, Tanner CM, Hauser RA, Isaacson SH, Nausieda PA, Truong DD, et al. ADS-5102 (Amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID Study): a randomized clinical trial. JAMA Neurol. 2017;74(8):941–9. https://doi.org/10.1001/jamaneurol.2017.0943.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson's disease (EASE LID 3). Mov Disord. 2017;32(12):1701–9. https://doi.org/10.1002/mds.27131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Elmer LW, Juncos JL, Singer C, Truong DD, Criswell SR, Parashos S, et al. Pooled analyses of phase III studies of ADS-5102 (amantadine) extended-release capsules for dyskinesia in Parkinson's disease. CNS Drugs. 2018;32(4):387–98. https://doi.org/10.1007/s40263-018-0498-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. McFarthing K, Prakash N, Simuni T. Clinical trial highlights—dyskinesia. J Parkinsons Dis. 2019;9(3):449–65. https://doi.org/10.3233/JPD-199002.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Moreau C, Delval A, Tiffreau V, Defebvre L, Dujardin K, Duhamel A, et al. Memantine for axial signs in Parkinson's disease: a randomised, double-blind, placebo-controlled pilot study. J Neurol Neurosurg Psychiatry. 2013;84(5):552–5. https://doi.org/10.1136/jnnp-2012-303182.

    Article  PubMed  Google Scholar 

  66. Wictorin K, Widner H. Memantine and reduced time with dyskinesia in Parkinson's disease. Acta Neurol Scand. 2016;133(5):355–60. https://doi.org/10.1111/ane.12468.

    Article  PubMed  CAS  Google Scholar 

  67. Fox SH, Metman LV, Nutt JG, Brodsky M, Factor SA, Lang AE, et al. Trial of dextromethorphan/quinidine to treat levodopa-induced dyskinesia in Parkinson's disease. Mov Disord. 2017;32(6):893–903. https://doi.org/10.1002/mds.26976.

    Article  PubMed  CAS  Google Scholar 

  68. Silverdale MA, Nicholson SL, Crossman AR, Brotchie JM. Topiramate reduces levodopa-induced dyskinesia in the MPTP-lesioned marmoset model of Parkinson's disease. Mov Disord. 2005;20(4):403–9. https://doi.org/10.1002/mds.20345.

    Article  PubMed  Google Scholar 

  69. Kobylecki C, Hill MP, Crossman AR, Ravenscroft P. Synergistic antidyskinetic effects of topiramate and amantadine in animal models of Parkinson's disease. Mov Disord. 2011;26(13):2354–63. https://doi.org/10.1002/mds.23867.

    Article  PubMed  Google Scholar 

  70. Kobylecki C, Burn DJ, Kass-Iliyya L, Kellett MW, Crossman AR, Silverdale MA. Randomized clinical trial of topiramate for levodopa-induced dyskinesia in Parkinson's disease. Parkinsonism Relat Disord. 2014;20(4):452–5. https://doi.org/10.1016/j.parkreldis.2014.01.016.

    Article  PubMed  Google Scholar 

  71. Goetz CG, Stebbins GT, Chung KA, Nicholas AP, Hauser RA, Merkitch D, et al. Topiramate as an adjunct to amantadine in the treatment of dyskinesia in parkinson's disease: a randomized, double-blind, placebo-controlled multicenter study. Mov Disord. 2017;32(9):1335–6. https://doi.org/10.1002/mds.27092.

    Article  PubMed  CAS  Google Scholar 

  72. Berg D, Godau J, Trenkwalder C, Eggert K, Csoti I, Storch A, et al. AFQ056 treatment of levodopa-induced dyskinesias: results of 2 randomized controlled trials. Mov Disord. 2011;26(7):1243–50. https://doi.org/10.1002/mds.23616.

    Article  PubMed  Google Scholar 

  73. Stocchi F, Rascol O, Destee A, Hattori N, Hauser RA, Lang AE, et al. AFQ056 in Parkinson patients with levodopa-induced dyskinesia: 13-week, randomized, dose-finding study. Mov Disord. 2013;28(13):1838–46. https://doi.org/10.1002/mds.25561.

    Article  PubMed  CAS  Google Scholar 

  74. Kumar R, Hauser RA, Mostillo J, Dronamraju N, Graf A, Merschhemke M, et al. Mavoglurant (AFQ056) in combination with increased levodopa dosages in Parkinson's disease patients. Int J Neurosci. 2016;126(1):20–4. https://doi.org/10.3109/00207454.2013.841685.

    Article  PubMed  CAS  Google Scholar 

  75. Trenkwalder C, Stocchi F, Poewe W, Dronamraju N, Kenney C, Shah A, et al. Mavoglurant in Parkinson's patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord. 2016;31(7):1054–8. https://doi.org/10.1002/mds.26585.

    Article  PubMed  CAS  Google Scholar 

  76. Tison F, Keywood C, Wakefield M, Durif F, Corvol JC, Eggert K, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson's disease. Mov Disord. 2016;31(9):1373–80. https://doi.org/10.1002/mds.26659.

    Article  PubMed  CAS  Google Scholar 

  77. Lundbeck reports headline results from phase IIa AMBLED study of foliglurax in Parkinson’s disease. Denmark. 2020.

  78. Rascol O, Ferreira J, Negre-Pages L, Perez-Lloret S, Lacomblez L, Galitzky M, et al. A proof-of-concept, randomized, placebo-controlled, multiple cross-overs (n-of-1) study of naftazone in Parkinson's disease. Fundam Clin Pharmacol. 2012;26(4):557–64. https://doi.org/10.1111/j.1472-8206.2011.00951.x.

    Article  PubMed  CAS  Google Scholar 

  79. Corvol JC, Durif F, Meissner WG, Azulay JP, Haddad R, Guimaraes-Costa R, et al. Naftazone in advanced Parkinson's disease: an acute l-DOPA challenge randomized controlled trial. Parkinsonism Relat Disord. 2019;60:51–6. https://doi.org/10.1016/j.parkreldis.2018.10.005.

    Article  PubMed  Google Scholar 

  80. Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Bjorklund A, et al. Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord. 2013;28(8):1088–96. https://doi.org/10.1002/mds.25366.

    Article  PubMed  CAS  Google Scholar 

  81. Svenningsson P, Rosenblad C, Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B, et al. Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson's disease: a dose-finding study. Brain. 2015;138(4):963–73. https://doi.org/10.1093/brain/awu409.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Trenkwalder C, Berg D, Rascol O, Eggert K, Ceballos-Baumann A, Corvol JC, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov Disord. 2016;31(7):1049–54. https://doi.org/10.1002/mds.26569.

    Article  PubMed  CAS  Google Scholar 

  83. Johnston TH, van der Meij A, Brotchie JM, Fox SH. Effect of histamine H2 receptor antagonism on levodopa-induced dyskinesia in the MPTP-macaque model of Parkinson's disease. Mov Disord. 2010;25(10):1379–90. https://doi.org/10.1002/mds.23069.

    Article  PubMed  Google Scholar 

  84. Mestre TA, Shah BB, Connolly BS, de Aquino C, Al Dhakeel A, Walsh R, et al. Famotidine, a histamine H2 receptor antagonist, does not reduce levodopa-induced dyskinesia in Parkinson's disease: a proof-of-concept study. Mov Disord Clin Pract. 2014;1(3):219–24. https://doi.org/10.1002/mdc3.12061.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sieradzan KA, Fox SH, Hill M, Dick JP, Crossman AR, Brotchie JM. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study. Neurology. 2001;57(11):2108–11. https://doi.org/10.1212/wnl.57.11.2108.

    Article  PubMed  CAS  Google Scholar 

  86. Carroll CB, Bain PG, Teare L, Liu X, Joint C, Wroath C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology. 2004;63(7):1245–50. https://doi.org/10.1212/01.wnl.0000140288.48796.8e.

    Article  PubMed  CAS  Google Scholar 

  87. Koppel BS, Brust JC, Fife T, Bronstein J, Youssof S, Gronseth G, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014;82(17):1556–633. https://doi.org/10.1212/WNL.0000000000000363.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Du H, Nie S, Chen G, Ma K, Xu Y, Zhang Z, et al. Levetiracetam ameliorates l-DOPA-induced dyskinesia in hemiparkinsonian rats inducing critical molecular changes in the striatum. Parkinsons Dis. 2015;2015:253878. https://doi.org/10.1155/2015/253878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ebada MA, Alkanj S, Ebada M, Abdelkarim AH, Diab A, Aziz MAE, et al. Safety and efficacy of levetiracetam for the management of levodopa-induced dyskinesia in patients with Parkinson's disease: a systematic review. CNS Neurol Disord Drug Targets. 2019;18(4):317–25. https://doi.org/10.2174/1871527318666190314101314.

    Article  PubMed  CAS  Google Scholar 

  90. Johnston TH, Geva M, Steiner L, Orbach A, Papapetropoulos S, Savola JM, et al. Pridopidine, a clinic-ready compound, reduces 3,4-dihydroxyphenylalanine-induced dyskinesia in Parkinsonian macaques. Mov Disord. 2019;34(5):708–16. https://doi.org/10.1002/mds.27565.

    Article  PubMed  CAS  Google Scholar 

  91. Dirkx MF, Zach H, Bloem BR, Hallett M, Helmich RC. The nature of postural tremor in Parkinson disease. Neurology. 2018;90(13):e1095–e11031103. https://doi.org/10.1212/WNL.0000000000005215.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Parkinson’s Foundation Consensus Statement on the Use of Medical Cannabis for Parkinson’s Disease. 2020.

  93. Iansek R, Danoudis M. Freezing of gait in Parkinson's disease: its pathophysiology and pragmatic approaches to management. Mov Disord Clin Pract. 2017;4(3):290–7. https://doi.org/10.1002/mdc3.12463.

    Article  PubMed  Google Scholar 

  94. Henderson EJ, Lord SR, Brodie MA, Gaunt DM, Lawrence AD, Close JC, et al. Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):249–58. https://doi.org/10.1016/S1474-4422(15)00389-0.

    Article  PubMed  CAS  Google Scholar 

  95. Li Z, Yu Z, Zhang J, Wang J, Sun C, Wang P, et al. Impact of rivastigmine on cognitive dysfunction and falling in Parkinson's disease patients. Eur Neurol. 2015;74(1–2):86–91. https://doi.org/10.1159/000438824.

    Article  PubMed  CAS  Google Scholar 

  96. McDonald J, Pourcher E, Nadeau A, Corbeil P. A randomized trial of oral and transdermal rivastigmine for postural instability in Parkinson disease dementia. Clin Neuropharmacol. 2018;41(3):87–93. https://doi.org/10.1097/WNF.0000000000000275.

    Article  PubMed  CAS  Google Scholar 

  97. Mancini M, Chung K, Zajack A, Martini DN, Ramsey K, Lapidus J, et al. Effects of augmenting cholinergic neurotransmission on balance in Parkinson's disease. Parkinsonism Relat Disord. 2019;69:40–7. https://doi.org/10.1016/j.parkreldis.2019.10.022.

    Article  PubMed  Google Scholar 

  98. Lieberman A, Lockhart TE, Olson MC, Smith Hussain VA, Frames CW, Sadreddin A, et al. Nicotine bitartrate reduces falls and freezing of gait in Parkinson disease: a reanalysis. Front Neurol. 2019;10:424. https://doi.org/10.3389/fneur.2019.00424.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Iijima M, Orimo S, Terashi H, Suzuki M, Hayashi A, Shimura H, et al. Efficacy of istradefylline for gait disorders with freezing of gait in Parkinson's disease: a single-arm, open-label, prospective, multicenter study. Expert Opin Pharmacother. 2019;20(11):1405–11. https://doi.org/10.1080/14656566.2019.1614167.

    Article  PubMed  CAS  Google Scholar 

  100. Kutz C, Adam L, Moncheski E. Effects of droxidopa when measuring gait speed, kyphosis, and functional reach in Parkinson’s disease [abstract]. Mov Disord. 2018:33.

  101. Hauser RA, Hewitt LA, Isaacson S. Droxidopa in patients with neurogenic orthostatic hypotension associated with Parkinson's disease (NOH306A). J Parkinsons Dis. 2014;4(1):57–655. https://doi.org/10.3233/JPD-130259.

    Article  PubMed  CAS  Google Scholar 

  102. Francois C, Hauser RA, Aballea S, Dorey J, Kharitonova E, Hewitt LA. Cost-effectiveness of droxidopa in patients with neurogenic orthostatic hypotension: post-hoc economic analysis of phase 3 clinical trial data. J Med Econ. 2016;19(5):515–25. https://doi.org/10.3111/13696998.2015.1136827.

    Article  PubMed  Google Scholar 

  103. Delval A, Moreau C, Bleuse S, Guehl D, Bestaven E, Guillaud E, et al. Gait and attentional performance in freezers under methylphenidate. Gait Posture. 2015;41(2):384–8. https://doi.org/10.1016/j.gaitpost.2014.10.022.

    Article  PubMed  CAS  Google Scholar 

  104. Luca CC, Nadayil G, Dong C, Nahab FB, Field-Fote E, Singer C. Dalfampridine in Parkinson's disease related gait dysfunction: a randomized double blind trial. J Neurol Sci. 2017;379:7–11. https://doi.org/10.1016/j.jns.2017.05.011.

    Article  PubMed  CAS  Google Scholar 

  105. Hiller AL, Murchison CF, Lobb BM, O'Connor S, O'Connor M, Quinn JF. A randomized, controlled pilot study of the effects of vitamin D supplementation on balance in Parkinson's disease: does age matter? PLoS ONE. 2018;13(9):e0203637. https://doi.org/10.1371/journal.pone.0203637.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kim YE, Yun JY, Jeon BS. Effect of intravenous amantadine on dopaminergic-drug-resistant freezing of gait. Parkinsonism Relat Disord. 2011;17(6):491–2. https://doi.org/10.1016/j.parkreldis.2011.03.010.

    Article  PubMed  Google Scholar 

  107. Chan HF, Kukkle PL, Merello M, Lim SY, Poon YY, Moro E. Amantadine improves gait in PD patients with STN stimulation. Parkinsonism Relat Disord. 2013;19(3):316–9. https://doi.org/10.1016/j.parkreldis.2012.11.005.

    Article  PubMed  Google Scholar 

  108. Kim YE, Yun JY, Yang HJ, Kim HJ, Gu N, Yoon SH, et al. Intravenous amantadine for freezing of gait resistant to dopaminergic therapy: a randomized, double-blind, placebo-controlled, cross-over clinical trial. PLoS ONE. 2012;7(11):e48890. https://doi.org/10.1371/journal.pone.0048890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lee JY, Oh S, Kim JM, Kim JS, Oh E, Kim HT, et al. Intravenous amantadine on freezing of gait in Parkinson's disease: a randomized controlled trial. J Neurol. 2013;260(12):3030–8. https://doi.org/10.1007/s00415-013-7108-7.

    Article  PubMed  CAS  Google Scholar 

  110. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  PubMed  CAS  Google Scholar 

  111. Johnston TH, Lacoste AMB, Visanji NP, Lang AE, Fox SH, Brotchie JM. Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology. 2019;147:11–27. https://doi.org/10.1016/j.neuropharm.2018.05.035.

    Article  PubMed  CAS  Google Scholar 

  112. Espay AJ, Lang AE. Parkinson diseases in the 2020s and beyond: replacing clinico-pathologic convergence with systems biology divergence. J Parkinsons Dis. 2020s;8(s1):S59–S64. https://doi.org/10.3233/JPD-181465.

    Article  PubMed  PubMed Central  Google Scholar 

  113. van den Heuvel L, Dorsey RR, Prainsack B, Post B, Stiggelbout AM, Meinders MJ, et al. Quadruple decision making for Parkinson's disease patients: combining expert opinion, patient preferences, scientific evidence, and big data approaches to reach precision medicine. J Parkinsons Dis. 2020;10(1):223–31. https://doi.org/10.3233/JPD-191712.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan H. Fox.

Ethics declarations

Funding

This study was supported in part by the Edmond J. Safra Philanthropic Foundation, Vadodara Institute of Neurological Sciences, and the Parkinson’s Foundation through their support of the fellowship training of PG-L., SB and GS, respectively.

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The article is based upon previously published studies and patient data and is in line with the journal’s ethical guidelines.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

SSB, PG-L, and GS performed the detailed review of the literature and undertook the writing of the manuscript. SF provided critical comments, recommendations, and editorial contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Latapi, P., Bhowmick, S.S., Saranza, G. et al. Non-Dopaminergic Treatments for Motor Control in Parkinson’s Disease: An Update. CNS Drugs 34, 1025–1044 (2020). https://doi.org/10.1007/s40263-020-00754-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-020-00754-0

Navigation