Novel Pharmacotherapies for L-DOPA-Induced Dyskinesia

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dyskinesia or abnormal involuntary movement is an unfortunate consequence of long-term therapy with L-DOPA, a gold standard for the treatment of Parkinson’s disease (PD). L-DOPA-induced dyskinesia (LID) is affected by age of onset, duration and severity of PD, L-DOPA dose, as well as gender. The main treatment modality is reduction of L-DOPA dose. Although administration of apomorphine, amantadine, and clozapine may be helpful, more effective pharmacotherapies are urgently needed. Recent advances in our understanding of the pathophysiology of LID have led to suggestions of novel interventions. In this chapter, three classes of drugs, nicotinic receptor agonists, glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonists, and cannabinoid receptor agonists, where their effectiveness in preclinical studies has been established, will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 1,283.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,283.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACh:

Acetylcholine

AMPA:

Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

BDNF:

Brain-derived neurotrophic factor

BG:

Basal ganglia

CB:

Cannabinoid

CBD:

Cannabidiol

CBRs:

Cannabinoid receptors

COMT:

Catechol-O-methyltransferase

DRD2Taq1A:

DRD2 gene Taq1A

DA:

Dopamine

DAT:

DA transporter

DRD2:

DA receptor D2

ECs:

Endocannabinoids

GPCRs:

G-protein-coupled receptors

L-DOPA:

Levodopa

LID:

L-DOPA-induced dyskinesia

LPS:

Lipopolysaccharide

LRRK2:

Leucine-rich repeat kinase 2

mGluRs:

Metabotropic glutamate receptors

MOA:

Monoamine oxidase

1-methyl-4-phenylpyridinium:

MPP+

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

nAChRs:

Nicotinic cholinergic receptors

NMDA:

N-methyl-D-aspartate

6-OHDA:

6-hydroxydopamine

PARK2:

Parkin RBR E3 ubiquitin protein ligase

PARK7:

Parkinson’s disease protein 7

PCP:

Phencyclidine

P-CREB:

Phosphorylated CAMP response element-binding protein

PD:

Parkinson’s disease

PINK1:

PTEN-induced putative kinase 1

PTSD:

Post-traumatic stress disorder

rTMS:

Repetitive transcranial magnetic stimulation

SNc:

Substantia nigra pars compacta

THCV:

Δ9-tetrahydrocannabivarin

TRPV-1:

Transient receptor potential vanilloid-1

Δ9-THC:

Δ9-tetrahydrocannabinol

References

  • Abioye, A., Ayodele, O., Marinkovic, A., Patidar, R., Akinwekomi, A., & Sanyaolu, A. (2020). Δ9-Tetrahydrocannabivarin (THCV): A commentary on potential therapeutic benefit for the management of obesity and diabetes. Journal of Cannabis Research, 2(1), 6.

    Article  Google Scholar 

  • Alhowail, A. (2021). Molecular insights into the benefits of nicotine on memory and cognition (Review). Molecular Medicine Reports, 23(6), 398.

    Article  CAS  Google Scholar 

  • AlShimemeri, S., Fox, S. H., & Visanji, N. P. (2020). Emerging drugs for the treatment of L-DOPA-Induced Dyskinesia: An Update. Expert Opinion on Emerging Drugs, 25(2), 131–144.

    Article  CAS  Google Scholar 

  • Anderson, F. L., Coffey, M. M., Berwin, B. L., & Havrda, M. C. (2018). Inflammasomes: An emerging mechanism translating environmental toxicant exposure into Neuroinflammation in Parkinson’s disease. Toxicological Sciences, 166(1), 3–15.

    Article  CAS  Google Scholar 

  • Andrade, V., Mateus, M. L., Batoréu, M. C., Aschner, M., & Dos Santos, A. M. (2017). Toxic mechanisms underlying motor activity changes induced by a mixture of lead, arsenic and manganese. EC Pharmacology and Toxicology, 3(2), 31–42.

    Google Scholar 

  • Aradi, S. D., & Hauser, R. A. (2020). Medical management and prevention of motor complications in Parkinson’s disease. Neurotherapeutics, 17(4), 1339–1365.

    Article  Google Scholar 

  • Assous, M. (2021). Striatal cholinergic transmission. Focus on nicotinic receptors’ influence in striatal circuits. The European Journal of Neuroscience, 2021 Feb 2.

    Google Scholar 

  • Azimi, M., Oemisch, M., & Womelsdorf, T. (2020). Dissociation of nicotinic α7 and α4/β2 sub-receptor agonists for enhancing learning and attentional filtering in nonhuman primates. Psychopharmacology, 237(4), 997–1010.

    Article  CAS  Google Scholar 

  • Bagdas, D., Meade, J. A., Alkhlaif, Y., Muldoon, P. P., Carroll, F. I., & Damaj, M. I. (2018). Effect of nicotine and Alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. European Journal of Pain. https://doi.org/10.1002/ejp.1231

  • Bartlett, M. J., Flores, A. J., Ye, T., Smidt, S. I., Dollish, H. K., Stancati, J. A., Farrell, D. C., Parent, K. L., Doyle, K. P., Besselsen, D. G., Heien, M. L., Cowen, S. L., Steece-Collier, K., Sherman, S. J., & Falk, T. (2020). Preclinical evidence in support of repurposing sub-anesthetic ketamine as a treatment for L-DOPA-induced dyskinesia. Experimental Neurology, 333, 113413.

    Article  CAS  Google Scholar 

  • Bashir, H. H., & Jankovic, J. (2020). Treatment of tardive dyskinesia. Neurologic Clinics, 38(2), 379–396.

    Article  Google Scholar 

  • Behl, T., Kaur, G., Bungau, S., Jhanji, R., Kumar, A., Mehta, V., Zengin, G., Brata, R., Hassan, S. S. U., & Fratila, O. (2020). Distinctive evidence involved in the role of endocannabinoid signalling in Parkinson's disease: A perspective on associated therapeutic interventions. International Journal of Molecular Sciences, 21(17), 6235.

    Article  CAS  Google Scholar 

  • Bell, J. D., & Stary, C. M. (2017). Anesthetic neurotoxicity: An emerging role for glia in neuroprotection. Journal of Molecular Medicine (Berlin, Germany), 95(4), 349–351.

    Article  Google Scholar 

  • Betthauser, K., Pilz, J., & Vollmer, L. E. (2015). Use and effects of cannabinoids in military veterans with posttraumatic stress disorder. American Journal of Health-System Pharmacy, 72(15), 1279–1284.

    Article  Google Scholar 

  • Bordia, T., & Perez, X. A. (2019). Cholinergic control of striatal neurons to modulate L-dopa-induced dyskinesias. The European Journal of Neuroscience, 49(6), 859–868.

    Article  Google Scholar 

  • Breijyeh, Z., Jubeh, B., Bufo, S. A., Karaman, R., & Scrano, L. (2021). Cannabis: A toxin-producing plant with potential therapeutic uses. Toxins (Basel), 13(2), 117.

    Article  CAS  Google Scholar 

  • Buhmann, C., Mainka, T., Ebersbach, G., & Gandor, F. (2019). Evidence for the use of cannabinoids in Parkinson’s disease. Journal of Neural Transmission (Vienna), 126(7), 913–924.

    Article  Google Scholar 

  • Chakrabarti, B., Persico, A., Battista, N., & Maccarrone, M. (2015). Endocannabinoid signaling in Autism. Neurotherapeutics, 12(4), 837–847.

    Article  CAS  Google Scholar 

  • Changeux, J. P. (2018). The nicotinic acetylcholine receptor: A typical ‘Allosteric Machine’. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1749), 20170174.

    Article  Google Scholar 

  • Cisler, J. M., Privratsky, A. A., Sartin-Tarm, A., et al. (2020). L-DOPA and consolidation of fear extinction learning among women with posttraumatic stress disorder. Translational Psychiatry, 10, 287.

    Article  CAS  Google Scholar 

  • Conti, A. A., Tolomeo, S., Steele, J. D., & Baldacchino, A. M. (2020). Severity of negative mood and anxiety symptoms occurring during acute abstinence from tobacco: A systematic Review and Meta-analysis. Neuroscience and Biobehavioral Reviews, 115, 48–63.

    Article  CAS  Google Scholar 

  • Cooray, R., Gupta, V., & Suphioglu, C. (2020). Current aspects of the endocannabinoid system and Targeted THC and CBD Phytocannabinoids as potential therapeutics for Parkinson’s and Alzheimer’s diseases: A review. Molecular Neurobiology, 57(11), 4878–4890.

    Article  CAS  Google Scholar 

  • Crivelaro do Nascimento, G., Ferrari, D. P., Guimaraes, F. S., Del Bel, E. A., Bortolanza, M., & Ferreira-Junior, N. C. (2020). Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson’s disease. Neuropharmacology, 163, 107808.

    Article  CAS  Google Scholar 

  • D’Souza, R. S., & Hooten, W. M. (2020). Extrapyramidal symptoms. In StatPearls [Internet]. StatPearls Publishing. PMID: 30475568.

    Google Scholar 

  • Dani, J. A. (2015). Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. International Review of Neurobiology, 124, 3–19.

    Article  CAS  Google Scholar 

  • Dashtipour, K., Tafreshi, A. R., Pahwa, R., & Lyons, K. E. (2019). Extended-release amantadine for Levodopa-induced dyskinesia. Expert Review of Neurotherapeutics, 19(4), 293–299.

    Article  CAS  Google Scholar 

  • Dinter, E., Saridaki, T., Diederichs, L., Reichmann, H., & Falkenburger, B. H. (2020). Parkinson’s disease and translational research. Translational Neurodegeneration, 9(1), 43.

    Article  Google Scholar 

  • Dong, Y., Bi, W., Zheng, K., Zhu, E., Wang, S., **ong, Y., Chang, J., Jiang, J., Liu, B., Lu, Z., & Cheng, Y. (2020). Nicotine prevents oxidative stress-induced hippocampal neuronal injury through α7-nAChR/Erk1/2 signaling pathway. Frontiers in Molecular Neuroscience, 13, 557647.

    Article  CAS  Google Scholar 

  • Dorszewska, J., Kowalska, M., Prendecki, M., Piekut, T., Kozłowska, J., & Kozubski, W. (2021). Oxidative stress factors in Parkinson’s disease. Neural Regeneration Research, 16(7), 1383–1391.

    Article  CAS  Google Scholar 

  • Dos-Santos-Pereira, M., Abreu, G. H. D., Rocca, J., Hamadat, S., Raisman-Vozari, R., Michel, P. P., & Del Bel, E. (2021). Contributive role of TNF-α to L-DOPA-induced Dyskinesia in a unilateral 6-OHDA Lesion model of Parkinson’s disease. Frontiers in Pharmacology, 11, 617085.

    Article  Google Scholar 

  • Dos-Santos-Pereira, M., da-Silva, C. A., Guimarães, F. S., & Del-Bel, E. (2016). Co-administration of Cannabidiol and Capsazepine Reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiology of Disease, 94, 179–195.

    Article  CAS  Google Scholar 

  • Dos-Santos-Pereira, M., Guimarães, F. S., Del-Bel, E., Raisman-Vozari, R., & Michel, P. P. (2020). Cannabidiol prevents LPS-induced microglial inflammation by inhibiting ROS/NF-κB-dependent signaling and glucose consumption. Glia, 68(3), 561–573.

    Article  Google Scholar 

  • Dwi Wahyu, I., Chiken, S., Hasegawa, T., Sano, H., & Nambu, A. (2021). Abnormal cortico-basal ganglia neurotransmission in a mouse model of L-dopa-induced Dyskinesia. The Journal of Neuroscience, 41(12), 2668–2683.

    Article  Google Scholar 

  • Espadas, I., Keifman, E., Palomo-Garo, C., Burgaz, S., García, C., Fernández-Ruiz, J., & Moratalla, R. (2020). Beneficial effects of the phytocannabinoid Δ9-THCV in L-DOPA-induced Dyskinesia in Parkinson’s disease. Neurobiology of Disease, 14, 104892.

    Article  Google Scholar 

  • Ferreira-Junior, N. C., Campos, A. C., Guimarães, F. S., Del-Bel, E., Zimmermann, P. M. D. R., Brum Junior, L., Hallak, J. E., Crippa, J. A., & Zuardi, A. W. (2020). Biological bases for a possible effect of cannabidiol in Parkinson’s disease. Brazilian Journal of Psychiatry, 42(2), 218–224.

    Article  Google Scholar 

  • Franklin, J. M., Riordan Kennedy Broseguini DeSouza, R. K. B., & Carrasco, G. A. (2021). Cannabinoid 2 receptors regulate dopamine 2 receptor expression by a Beta-Arrestin 2 and GRK5-dependent mechanism in neuronal cells. Neuroscience Letters, 135883.

    Google Scholar 

  • Fujita, A., Fujita, Y., Pu, Y., Chang, L., & Hashimoto, K. (2020). MPTP-induced dopaminergic neurotoxicity in mouse brain is attenuated after subsequent intranasal administration of (R)-Ketamine: A role of TrkB signaling. Psychopharmacology, 237(1), 83–92.

    Article  CAS  Google Scholar 

  • Gandelman, J. A., Newhouse, P., & Taylor, W. D. (2018). Nicotine and networks: Potential for enhancement of mood and cognition in Late-life depression. Neuroscience and Biobehavioral Reviews, 84, 289–298.

    Article  CAS  Google Scholar 

  • Getachew, B., Csoka, A. B., Aschner, M., & Tizabi, Y. (2019). Nicotine protects against manganese and iron-induced Toxicity in SH-SY5Y cells: Implication for Parkinson’s disease. Neurochemistry International, 124, 19–24.

    Article  CAS  Google Scholar 

  • Giorgi, C., Bouhamida, E., Danese, A., Previati, M., Pinton, P., & Patergnani, S. (2021). Relevance of autophagy and mitophagy dynamics and markers in Neurodegenerative diseases. Biomedicine, 9(2), 149.

    CAS  Google Scholar 

  • Golub, V., & Reddy, D. S. (2021). Cannabidiol therapy for refractory epilepsy and seizure disorders. Advances in Experimental Medicine and Biology, 1264, 93–110.

    Article  CAS  Google Scholar 

  • Gonzalez-Latapi, P., Marotta, N., & Mencacci, N. E. (2021). Emerging and converging molecular mechanisms in dystonia. Journal of Neural Transmission (Vienna). Epub ahead of print.

    Google Scholar 

  • Hahn, B., Olmstead, C. K., Yuille, M. B., Chiappelli, J. J., & Wells, A. K. (2020). Attention-enhancing effects of propranolol and synergistic effects with nicotine. Cognitive, Affective, & Behavioral Neuroscience, 20(3), 658–668.

    Article  Google Scholar 

  • Han, T., Wang, Q., Lai, R., Zhang, D., Diao, Y., & Yin, Y. (2020). Nicotine induced neurocognitive protection and anti-inflammation effect by activating α 4β 2 Nicotinic acetylcholine receptors in ischemic rats. Nicotine & Tobacco Research, 22(6), 919–924.

    Article  CAS  Google Scholar 

  • Harms, A. S., Ferreira, S. A., & Romero-Ramos, M. (2021). Periphery and brain, innate and adaptive immunity in Parkinson’s disease. Acta Neuropathologica. Epub ahead of print.

    Google Scholar 

  • Hustad, E., & Aasly, J. O. (2020). Clinical and imaging markers of prodromal Parkinson’s disease. Frontiers in Neurology, 11, 395.

    Article  Google Scholar 

  • Ivleva, I., Pestereva, N., Zubov, A., & Karpenko, M. (2020). Intranasal exposure of manganese induces neuroinflammation and disrupts dopamine metabolism in the striatum and hippocampus. Neuroscience Letters, 738, 135344.

    Article  CAS  Google Scholar 

  • Junior, N. C. F., Dos-Santos-Pereira, M., Guimarães, F. S., & Del Bel, E. (2020). Cannabidiol and cannabinoid compounds as potential strategies for treating Parkinson’s disease and L-DOPA-Induced Dyskinesia. Neurotoxicity Research, 37(1), 12–29.

    Article  CAS  Google Scholar 

  • Koukouli, F., & Changeux, J. P. (2020). Do nicotinic receptors modulate high-order cognitive processing? Trends in Neurosciences, 43(8), 550–564.

    Article  CAS  Google Scholar 

  • Kouli, A., Torsney, K. M., & Kuan, W. L. (2018). Parkinson’s disease: Etiology, neuropathology, and pathogenesis, Chapter 1. In T. B. Stoker & J. C. Greenland (Eds.), Parkinson’s disease: Pathogenesis and clinical aspects [Internet]. Codon Publications.

    Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic parkinsonism in humans due to a product of Meperidine-analog synthesis. Science, 219(4587), 979–980.

    Article  CAS  Google Scholar 

  • Li, S., Jiao, R., Zhou, X., & Chen, S. (2020a). Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 99(18), e19642.

    Google Scholar 

  • Li, X., Shen, L., Hua, T., & Liu, Z. J. (2020b). Structural and functional insights into cannabinoid receptors. Trends in Pharmacological Sciences, 41(9), 665–677.

    Google Scholar 

  • Liu, C. (2020). Targeting the cholinergic system in Parkinson’s disease. Acta Pharmacologica Sinica, 41(4), 453–463.

    Article  CAS  Google Scholar 

  • Luján, M. Á., & Valverde, O. (2020). The Pro-neurogenic effects of cannabidiol and its potential therapeutic implications in psychiatric disorders. Frontiers in Behavioral Neuroscience, 14, 109.

    Article  Google Scholar 

  • Manera, C., & Bertini, S. (2021). Cannabinoid-based medicines and multiple sclerosis. Advances in Experimental Medicine and Biology, 1264, 111–129.

    Article  CAS  Google Scholar 

  • McKnight, S., & Hack, N. (2020). Toxin-induced parkinsonism. Neurologic Clinics, 38(4), 853–865.

    Article  Google Scholar 

  • Mirelman, A., Bonato, P., Camicioli, R., Ellis, T. D., Giladi, N., Hamilton, J. L., Hass, C. J., Hausdorff, J. M., Pelosin, E., & Almeida, Q. J. (2019). Gait impairments in Parkinson’s disease. Lancet Neurology, 18(7), 697–708.

    Article  Google Scholar 

  • Ndayisaba, A., Kaindlstorfer, C., & Wenning, G. K. (2019). Iron in neurodegeneration – Cause or consequence? Frontiers in Neuroscience, 13, 180.

    Article  Google Scholar 

  • Olanow, C. W., Calabresi, P., & Obeso, J. A. (2020). Continuous dopaminergic stimulation as a treatment for Parkinson’s disease: Current status and future opportunities. Movement Disorders, 35(10), 1731–1744.

    Article  Google Scholar 

  • Oppong-Damoah, A., Gannon, B. M., & Murnane, K. S. (2021). The endocannabinoid system and alcohol dependence: Will cannabinoid receptor 2 Agonism be more fruitful than cannabinoid Receptor 1 antagonism? CNS & Neurological Disorders Drug Targets. 2021 Feb 10.

    Google Scholar 

  • Osborn, T. M., Hallett, P. J., Schumacher, J. M., & Isacson, O. (2020). Advantages and recent developments of autologous cell therapy for Parkinson’s disease patients. Frontiers in Cellular Neuroscience, 14, 58.

    Article  CAS  Google Scholar 

  • Oyama, G., & Hattori, N. (2021). New modalities and directions for dystonia care. Journal of Neural Transmission (Vienna).

    Google Scholar 

  • Pandey, S., & Srivanitchapoom, P. (2017). Levodopa-induced Dyskinesia: Clinical features, pathophysiology, and medical management. Annals of Indian Academy of Neurology, 20(3), 190–198.

    Google Scholar 

  • Papke, R. L., & Lindstrom, J. M. (2020). Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology, 168, 10802.

    Article  Google Scholar 

  • Patricio, F., Morales-Andrade, A. A., Patricio-Martínez, A., & Limón, I. D. (2020). Cannabidiol as a therapeutic target: Evidence of its neuroprotective and neuromodulatory function in Parkinson’s disease. Frontiers in Pharmacology, 11, 595635.

    Article  CAS  Google Scholar 

  • Peres, T. V., Schettinger, M. R., Chen, P., Carvalho, F., Avila, D. S., Bowman, A. B., & Aschner, M. (2016). Manganese-induced neurotoxicity: A review of its behavioral consequences and neuroprotective strategies. BMC Pharmacology and Toxicology, 17(1), 57.

    Article  Google Scholar 

  • Pérez-Olives, C., Rivas-Santisteban, R., Lillo, J., Navarro, G., & Franco, R. (2021). Recent advances in the potential of cannabinoids for neuroprotection in Alzheimer’s, Parkinson’s, and Huntington’s diseases. Advances in Experimental Medicine and Biology, 1264, 81–92.

    Article  Google Scholar 

  • Prenger, M. T. M., Madray, R., Van Hedger, K., Anello, M., & MacDonald, P. A. (2020). Social Symptoms of Parkinson’s disease. Parkinson’s Disease, 8846544.

    Google Scholar 

  • Quik, M., Boyd, J. T., Bordia, T., & Perez, X. (2019). Potential therapeutic application for nicotinic receptor drugs in movement disorders. Nicotine & Tobacco Research, 21(3), 357–369.

    Article  Google Scholar 

  • Rani, L., & Mondal, A. C. (2021). Unravelling the role of gut microbiota in Parkinson’s disease progression: Pathogenic and therapeutic implications. Neuroscience Research, S0168–0102(21), 00004–00003.

    Google Scholar 

  • Rentsch, P., Stayte, S., Egan, T., Clark, I., & Vissel, B. (2020). Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia. Neurobiology of Disease, 134, 104646.

    Article  Google Scholar 

  • Rincón-Cortés, M., & Grace, A. A. (2020). Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behavioural Brain Research, 79, 112367.

    Article  Google Scholar 

  • Rodríguez-Cueto, C., García-Toscano, L., Santos-García, I., Gómez-Almería, M., Gonzalo-Consuegra, C., Espejo-Porras, F., Fernández-Ruiz, J., & de Lago, E. (2021). Targeting the CB2 receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. British Journal of Pharmacology, 178(6), 1373–1387.

    Article  Google Scholar 

  • Rohbeck, E., Eckel, J., & Romacho, T. (2021). Cannabinoid receptors in metabolic regulation and diabetes. Physiology (Bethesda), 36(2), 102–113.

    CAS  Google Scholar 

  • Scarante, F. F., Ribeiro, M. A., Almeida-Santos, A. F., Guimarães, F. S., & Campos, A. C. (2021). Glial cells and their contribution to the mechanisms of action of cannabidiol in neuropsychiatric disorders. Frontiers in Pharmacology, 11, 618065.

    Article  Google Scholar 

  • Schneider, J. S., Marshall, C. A., Keibel, L., Snyder, N. W., Hill, M. P., Brotchie, J. M., Johnston, T. H., Waterhouse, B. D., & Kortagere, S. (2021). A Novel dopamine D3R agonist SK609 with norepinephrine transporter inhibition promotes improvement in cognitive task performance in rodent and non-human primate models of Parkinson’s disease. Experimental Neurology, 335, 1135148.

    Article  Google Scholar 

  • Seoane-Collazo, P., Diéguez, C., Nogueiras, R., Rahmouni, K., Fernández-Real, J. M., & López, M. (2021). Nicotine’s actions on energy balance: Friend or foe? Pharmacology & Therapeutics, 219, 107693.

    Article  CAS  Google Scholar 

  • Sherman, S. J., Estevez, M., Magill, A. B., & Falk, T. (2016). Case reports showing a long-term effect of subanesthetic ketamine infusion in reducing L-DOPA-induced Dyskinesias. Case Reports in Neurology, 8, 53–58.

    Article  Google Scholar 

  • Shi, L., Huang, C., Luo, Q., Rogers, E., **a, Y., Liu, W., Ma, W., Zeng, W., Gong, L., Fang, J., Tang, L., Cheng, A., Shi, R., & Chen, Z. (2019). The Association of iron and the pathologies of Parkinson’s diseases in MPTP/MPP+-induced neuronal degeneration in non-human primates and in cell culture. Frontiers in Aging Neuroscience, 11, 215.

    Article  CAS  Google Scholar 

  • Shi, L., Huang, C., Luo, Q., **a, Y., Liu, W., Zeng, W., Cheng, A., Shi, R., & Zhengli, C. (2020). Clioquinol improves motor and non-motor deficits in MPTP-induced monkey model of Parkinson's disease through AKT/mTOR pathway. Aging, 12(10), 9515–9533.

    Google Scholar 

  • Simon, D. K., Tanner, C. M., & Brundin, P. (2020). Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clinics in Geriatric Medicine, 36(1), 1–12.

    Article  Google Scholar 

  • Song, Y., Wang, Z. Y., **, Y. Y., & Guo, J. (2019). Association between dopamine receptor D2 TaqIA polymorphism and Parkinson disease risk: A meta-analysis. International Journal of Clinical and Experimental Pathology, 12(9), 3165–3170.

    CAS  Google Scholar 

  • Stampanoni Bassi, M., Gilio, L., Maffei, P., Dolcetti, E., Bruno, A., Buttari, F., Centonze, D., & Iezzi, E. (2018). Exploiting the multifaceted effects of cannabinoids on mood to boost Their therapeutic use against anxiety and depression. Frontiers in Molecular Neuroscience, 11, 424.

    Article  Google Scholar 

  • Stoker, T. B., & Barker, R. A. (2020). Recent developments in the treatment of parkinson’s disease [version 1; peer review: 2 approved]. F1000Research, 2020(9 (Faculty Rev)), 862.

    Article  Google Scholar 

  • Sui, Y., Tian, Y., Ko, W. K. D., Wang, Z., Jia, F., Horn, A., De Ridder, D., Choi, K. S., Bari, A. A., Wang, S., Hamani, C., Baker, K. B., Machado, A. G., Aziz, T. Z., Fonoff, E. T., Kühn, A. A., Bergman, H., Sanger, T., Liu, H., Haber, S. N., & Li, L. (2021). Deep Brain stimulation initiative: Toward innovative technology, new disease indications, and approaches to current and future clinical challenges in neuromodulation therapy. Frontiers in Neurology, 11, 597451.

    Article  Google Scholar 

  • Tao, Y., Vermilyea, S. C., Zammit, M., Lu, J., Olsen, M., Metzger, J. M., Yao, L., Chen, Y., Phillips, S., Holden, J. E., Bondarenko, V., Block, W. F., Barnhart, T. E., Schultz-Darken, N., Brunner, K., Simmons, H., Christian, B. T., Emborg, M. E., & Zhang, S. C. (2021). Autologous transplant therapy alleviates motor and depressive behaviors in Parkinsonian monkeys. Nature Medicine. Epub ahead of print.

    Google Scholar 

  • Terry, A. V., Jr., & Callahan, P. M. (2020). α7 Nicotinic acetylcholine receptors as therapeutic targets in schizophrenia: Update on animal and clinical studies and strategies for the future. Neuropharmacology, 170, 108053.

    Article  CAS  Google Scholar 

  • Tizabi, Y. (2016). Duality of antidepressants and neuroprotectants. Neurotoxicity Research, 30(1), 1–13.

    Article  CAS  Google Scholar 

  • Tizabi, Y., & Getachew, B. (2017). Nicotinic receptor intervention in Parkinson’s disease: Future directions. Clinical Pharmacology and Translational Medicine, 1(1), 14–19.

    Google Scholar 

  • Tizabi, Y., Getachew, B., Copeland, R. L., & Aschner, M. (2020). Nicotine and the nicotinic cholinergic system in COVID-19. The FEBS Journal, 287(17), 3656–3663.

    Article  CAS  Google Scholar 

  • Tizabi, Y., Getachew, B., Csoka, A. B., Manaye, K. F., & Copeland, R. L. (2019). Novel targets for parkinsonism-depression comorbidity. Progress in Molecular Biology and Translational Science, 167, 1–24.

    Article  Google Scholar 

  • Tran, J., Anastacio, H., & Bardy, C. (2020). Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinson’s Disease, 6(1), 8.

    Article  Google Scholar 

  • Valentine, G., & Sofuoglu, M. (2018). Cognitive effects of nicotine: Recent progress. Current Neuropharmacology, 16(4), 403–414.

    Article  CAS  Google Scholar 

  • Vega, J. N., Albert, K. M., Mayer, I. A., Taylor, W. D., & Newhouse, P. A. (2019). Nicotinic treatment of post-chemotherapy subjective cognitive impairment: A pilot study. Journal of Cancer Survivorship, 13(5), 673–686.

    Article  Google Scholar 

  • Vetel, S., Foucault-Fruchard, L., Tronel, C., Buron, F., Vergote, J., Bodard, S., Routier, S., Sérrière, S., & Chalon, S. (2021). Neuroprotective and anti-inflammatory effects of a therapy combining agonists of Nicotinic α7 and σ1 receptors in a rat model of Parkinson’s disease. Neural Regeneration Research, 16(6), 1099–1104.

    Article  CAS  Google Scholar 

  • Vijayakumar, D., & Jankovic, J. (2016). Drug-induced Dyskinesia, Part 1: Treatment of Levodopa-induced dyskinesia. Drugs, 76(7), 759–777.

    Article  CAS  Google Scholar 

  • Withey, S. L., Kangas, B. D., Charles, S., Gumber, A. B., Eisold, J. E., George, S., Bergman, J., & Madras, B. K. (2021). Effects of Daily Δ9-Tetrahydrocannabinol (THC) alone or combined with Cannabidiol (CBD) on Cognition-based behavior and activity in adolescent nonhuman primates. Drug and Alcohol Dependence, 108629.

    Google Scholar 

  • Ye, T., Bartlett, M. J., Sherman, S. J., Falk, T., & Cowen, S. L. (2021). Spectral signatures of L-DOPA-induced dyskinesia depend on L-DOPA dose and are suppressed by ketamine. Experimental Neurology, 340, 113670.

    Article  CAS  Google Scholar 

  • Zhang, C. L., Han, Q. W., Chen, N. H., & Yuan, Y. H. (2021). Research on develo** drugs for Parkinson’s disease. Brain Research Bulletin, 168, 100–109.

    Article  CAS  Google Scholar 

  • Zheng, M., Chen, M., Wang, W., Zhou, M., Liu, C., Fan, Y., & Shi, D. (2021). Protection by Rhynchophylline against MPTP/MPP+-induced neurotoxicity via regulating PI3K/Akt pathway. Journal of Ethnopharmacology, 268, 113568.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by the Howard University College of Medicine Bridge Funds and Pilot Study Awards Program (BFPSAP) 2020–2021 (YT, RLC); Spanish Ministry of Science and Innovation (PID2019-111693RBI00) and European Union’s Horizon 2020 research and innovation program, AND-PD (grant agreement no. 848002) (RM); VIEP-BUAP 2020-2021(IDL); São Paulo State Foundation for the Support of Research (FAPESP, Brazil; Grants 2014/25029-4 and 2017/24304-0), CAPES-COFECUB Grant #848/15) (EDB); and NIH/NIEHS R01ES10563 (MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Tizabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tizabi, Y. et al. (2022). Novel Pharmacotherapies for L-DOPA-Induced Dyskinesia. In: Kostrzewa, R.M. (eds) Handbook of Neurotoxicity. Springer, Cham. https://doi.org/10.1007/978-3-031-15080-7_218

Download citation

Publish with us

Policies and ethics

Navigation