Log in

Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The key challenge for scalable production of hydrogen from water lies in the rational design and preparation of high-performance and earth-abundant electrocatalysts to replace precious metal Pt and IrO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Although atomic M-N-C materials have been extensively studied in heterogeneous catalysis field, the insufficient antioxidant capacity of carbonous substrates hinders their practical application in OER. Develo** highly active and stable OER electrocatalysts is the key for electrochemical water splitting. This review presents feasible design strategies for fabricating carbon-free single-site catalysts and their applications in HER/OER and overall water splitting. The constitutive relationships between structure, composition, and catalytic performance for HER and OER are detailly discussed, providing ponderable insights into rationally constructing high-performance HER and OER electrocatalysts. The perspectives on the challenges and future research orientations in single-site catalysts for electrochemical water splitting are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Article  Google Scholar 

  2. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  3. Han, X. B.; Wang, D. X.; Gracia-Espino, E.; Luo, Y. H.; Tan, Y. Z.; Lu, D. F.; Li, Y. G.; Wågberg, T.; Wang, E. B.; Zheng, L. S. Fe-substituted cobalt-phosphate polyoxometalates as enhanced oxygen evolution catalysts in acidic media. Chin. J. Catal. 2020, 41, 853–857.

    Article  CAS  Google Scholar 

  4. Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

    Article  CAS  Google Scholar 

  5. Sun, W. J.; Meng, X. Y.; Xu, C. J.; Yang, J. Y.; Liang, X. M.; Dong, Y. J.; Dong, C. Z.; Ding, Y. Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction. Chin. J. Catal. 2020, 41, 1826–1836.

    Article  CAS  Google Scholar 

  6. Sun, W. J.; Lin, J. Q.; Liang, X. M.; Yang, J. Y.; Ma, B. C.; Ding, Y. Recent advances in catalysts based on molecular cubanes for visible light-driven water oxidation. Acta Phys. Chim. Sin. 2020, 36, 1905025.

    Article  Google Scholar 

  7. Zhang, Y.; Zhu, X. J.; Zhang, G. L.; Shi, P. D.; Wang, A. L. Rational catalyst design for oxygen evolution under acidic conditions: Strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 2021, 9, 5890–5914.

    Article  CAS  Google Scholar 

  8. Zhang, Y.; Wang, S. X.; Yang, R.; Dai, T. Y.; Zhang, N.; **, P. X.; Yan, C. H. Construction of Co9S8/MoS2 heterostructures for enhancing electrocatalytic hydrogen evolution reaction. Acta Chim. Sin. 2020, 78, 1455–1460.

    Article  CAS  Google Scholar 

  9. Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.

    Article  Google Scholar 

  10. Lei, L.; Huang, D. L.; Zhou, C. Y.; Chen, S.; Yan, X. L.; Li, Z. H.; Wang, W. J. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 2020, 408, 213177.

    Article  CAS  Google Scholar 

  11. Zheng, M.; Ding, Y.; Yu, L.; Du, X. Q.; Zhao, Y. K. In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater. 2017, 27, 1605846.

    Article  Google Scholar 

  12. Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

    Article  CAS  Google Scholar 

  13. Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    Article  CAS  Google Scholar 

  14. Li, J.; Li, Y. D.; Zhang, T. Recent progresses in the research of single-atom catalysts. Sci. China Mater. 2020, 63, 889–891.

    Article  Google Scholar 

  15. Jiang, H. N.; Zhang, P.; Wang, X. G.; Gong, Y. J. Synthesis of magnetic two-dimensional materials by chemical vapor deposition. Nano Res. 2021, 14, 1789–1801.

    Article  CAS  Google Scholar 

  16. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  17. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

    Article  CAS  Google Scholar 

  18. Zhou, M.; Bao, S. J.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.

    Article  CAS  Google Scholar 

  19. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  20. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  21. Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

    Article  CAS  Google Scholar 

  22. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  23. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  24. Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3443-7.

  25. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

    Article  CAS  Google Scholar 

  26. He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; **ao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

    Article  Google Scholar 

  27. Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; **ong, Y. J. Single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

    Article  CAS  Google Scholar 

  28. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    Article  CAS  Google Scholar 

  29. Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

    Article  CAS  Google Scholar 

  30. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  CAS  Google Scholar 

  31. Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  32. Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

    Article  CAS  Google Scholar 

  33. Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

    Article  CAS  Google Scholar 

  34. Zhang, Q. Q.; Guan, J. Q. Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 2020, 471, 228446.

    Article  CAS  Google Scholar 

  35. Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  36. Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

    Article  Google Scholar 

  37. Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E. et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2021, 11, 123–130.

    Article  CAS  Google Scholar 

  38. Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; **ang, S. H.; Rodriguez, P.; **ang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

    Article  CAS  Google Scholar 

  39. Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Singleatom Ru do** induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

    Article  CAS  Google Scholar 

  40. Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

    Article  CAS  Google Scholar 

  41. Lau, T. H. M.; Lu, X. W.; Kulhavy, J.; Wu, S.; Lu, L. L.; Wu, T. S.; Kato, R.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Transition metal atom do** of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 2018, 9, 4769–4776.

    Article  CAS  Google Scholar 

  42. Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem., Int. Ed. 2021, 60, 7251–7258.

    Article  CAS  Google Scholar 

  43. Lin, C.; Zhao, Y. H.; Zhang, H. J.; **e, S. H.; Li, Y. F.; Li, X. P.; Jiang, Z.; Liu, Z. P. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem. Sci. 2018, 9, 6803–6812.

    Article  CAS  Google Scholar 

  44. Liu, D. B.; Ding, S. Q.; Wu, C. Q.; Gan, W.; Wang, C. D.; Cao, D. F.; Rehman, Z. U.; Sang, Y.; Chen, S. M.; Zheng, X. S. et al. Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 6840–6846.

    Article  CAS  Google Scholar 

  45. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

    Article  CAS  Google Scholar 

  46. Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332.

    Article  CAS  Google Scholar 

  47. Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

    Article  Google Scholar 

  48. Li, Y.; Dong, Z.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

    Article  CAS  Google Scholar 

  49. Wang, J.; Xu, F.; **, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

    Article  Google Scholar 

  50. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  CAS  Google Scholar 

  51. Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

    Article  Google Scholar 

  52. **, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

    Article  CAS  Google Scholar 

  53. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Norskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  54. Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

    Article  CAS  Google Scholar 

  55. Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

    Article  Google Scholar 

  56. Pfeifer, V.; Jones, T. E.; Vélez, J. J. V.; Arrigo, R.; Piccinin, S.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 2017, 8, 2143–2149.

    Article  CAS  Google Scholar 

  57. Minguzzi, A.; Lugaresi, O.; Achilli, E.; Locatelli, C.; Vertova, A.; Ghigna, P.; Rondinini, S. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 2014, 5, 3591–3597.

    Article  CAS  Google Scholar 

  58. Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

    Article  CAS  Google Scholar 

  59. Zhao, Z. J.; Liu, S. H.; Zha, S. J.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

    Article  Google Scholar 

  60. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  61. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  62. Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

    Article  CAS  Google Scholar 

  63. Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

    Article  CAS  Google Scholar 

  64. Duan, H. L.; Liu, W.; Guo, P.; Tang, F. M.; Yan, W. S.; Yao, T. Identifying the single active site in MoS2-based hydrogen evolution electrocatalyst by XAFS technique. Radiat. Phys. Chem. 2020, 175, 108151.

    Article  CAS  Google Scholar 

  65. Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

    Article  Google Scholar 

  66. Hao, Y.; Wang, Y. T.; Xu, L. C.; Yang, Z.; Liu, R. P.; Li, X. Y. 1T-MoS2 monolayer doped with isolated Ni atoms as highly active hydrogen evolution catalysts: A density functional study. Appl. Surf. Sci. 2019, 469, 292–297.

    Article  CAS  Google Scholar 

  67. Ji, L.; Yan, P. F.; Zhu, C. H.; Ma, C. Y.; Wu, W. Z.; Wei, C.; Shen, Y. L.; Chu, S. Q.; Wang, J. O.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu do** for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B 2019, 251, 87–93.

    Article  CAS  Google Scholar 

  68. Cui, Z. T.; Sa, R. J.; Du, W.; ** to promote hydrogen evolution of MoS2 basal plane. Appl. Surf. Sci. 2021, 542, 148535.

    Article  CAS  Google Scholar 

  69. Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical do** of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

    Article  CAS  Google Scholar 

  70. Wu, C. Q.; Li, D. D.; Ding, S. Q.; Rehman, Z. U.; Liu, Q.; Chen, S. M.; Zhang, B.; Song, L. Monoatomic platinum-anchored metallic MoS2: Correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 2019, 10, 6081–6087.

    Article  CAS  Google Scholar 

  71. Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    Article  CAS  Google Scholar 

  72. Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; **ong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  73. Yang, Y. J.; Liu, J.; Liu, F.; Wang, Z.; Wu, D. W. FeS2-anchored transition metal single atoms for highly efficient overall water splitting: A DFT computational screening study. J. Mater. Chem. A 2021, 9, 2438–2447.

    Article  CAS  Google Scholar 

  74. Wang, C. L.; Wu, X.; Zhang, X.; Mu, G.; Li, P. L.; Luo, C.; Xu, H. J.; Di, Z. F. Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction. Appl. Phys. Lett. 2020, 116, 223901.

    Article  CAS  Google Scholar 

  75. Wang, Y. W.; Wan, J.; Tian, W.; Hou, Z. F.; Gu, X.; Wang, Y. Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. J. Colloid Interface Sci. 2021, 590, 210–218.

    Article  CAS  Google Scholar 

  76. Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

    Article  CAS  Google Scholar 

  77. Shang, H. S.; Zhao, Z. H.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Li, A.; Dong, J. C.; An, P. F.; Zheng, L. R.; Chen, W. X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22607–22612.

    Article  CAS  Google Scholar 

  78. He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

    Article  CAS  Google Scholar 

  79. Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

    Article  CAS  Google Scholar 

  80. Ye, S. H.; **ong, W.; Liao, P.; Zheng, L. R.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Liu, J. H. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. J. Mater. Chem. A 2020, 8, 11246–11254.

    Article  CAS  Google Scholar 

  81. Wu, J.; Han, N. N.; Ning, S. C.; Chen, T.; Zhu, C. Y.; Pan, C. X.; Wu, H. J.; Pennycook, S. J.; Guan, C. Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 14825–14832.

    Article  CAS  Google Scholar 

  82. Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

    Article  CAS  Google Scholar 

  83. Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; **ong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

    Article  Google Scholar 

  84. Li, D.; Chen, X. F.; Lv, Y. Z.; Zhang, G. Y.; Huang, Y.; Liu, W.; Li, Y.; Chen, R. S.; Nuckolls, C.; Ni, H. W. An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl. Catal. B 2020, 269, 118824.

    Article  CAS  Google Scholar 

  85. Gao, J. J.; Du, P.; Zhang, Q. H.; Shen, X.; Chiang, F. K.; Wen, Y. R.; Lin, X.; Liu, X. J.; Qiu, H. J. Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim. Acta 2019, 297, 155–162.

    Article  CAS  Google Scholar 

  86. Zhou, K. L.; Wang, C. C.; Wang, Z. L.; Han, C. B.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Wang, H. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy Environ. Sci. 2020, 13, 3082–3092.

    Article  CAS  Google Scholar 

  87. Liu, T. T.; Gao, W. B.; Wang, Q. Q.; Dou, M. L.; Zhang, Z. P.; Wang, F. Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew. Chem., Int. Ed. 2020, 59, 20423–20427.

    Article  CAS  Google Scholar 

  88. Cheng, X.; Lu, Y.; Zheng, L. R.; Cui, Y. T.; Niibe, M.; Tokushima, T.; Li, H. Y.; Zhang, Y. F.; Chen, G.; Sun, S. R. et al. Charge redistribution within platinum-nitrogen coordination structure to boost hydrogen evolution. Nano Energy 2020, 73, 104739.

    Article  CAS  Google Scholar 

  89. Li, M.; Ma, Q.; Zi, W.; Liu, X. J.; Zhu, X. J.; Liu, S. Z. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268.

    Article  Google Scholar 

  90. Liao, W. C.; Yau, S. Au(111)-supported Pt monolayer as the most active electrocatalyst toward hydrogen oxidation and evolution reactions in sulfuric acid. J. Phys. Chem. C 2017, 121, 19218–19225.

    Article  CAS  Google Scholar 

  91. Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

    Article  CAS  Google Scholar 

  92. Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

    Article  Google Scholar 

  93. Yang, Y.; Xue, X. X.; Chen, Q. J.; Feng, Y. X. Do** single transition metal atom into PtTe sheet for catalyzing nitrogen reduction and hydrogen evolution reactions. J. Chem. Phys. 2019, 151, 144710.

    Article  Google Scholar 

  94. Li, Y. P.; Chen, S. M.; Long, R.; Ju, H. X.; Wang, Z. W.; Yu, X. X.; Gao, F. Y.; Cai, Z. J.; Wang, C. M.; Xu, Q. et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306–312.

    Article  CAS  Google Scholar 

  95. Feng, Y. Y.; Guan, Y. X.; Zhang, H. J.; Huang, Z. Y.; Li, J.; Jiang, Z. Q.; Gu, X.; Wang, Y. Selectively anchoring Pt single atoms at hetero-interfaces of γ-Al2O3/NiS to promote the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 11783–11789.

    Article  CAS  Google Scholar 

  96. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    Article  CAS  Google Scholar 

  97. Dai, J.; Zhu, Y. L.; Tahini, H. A.; Lin, Q.; Chen, Y.; Guan, D. Q.; Zhou, C.; Hu, Z. W.; Lin, H. J.; Chan, T. S. et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657.

    Article  CAS  Google Scholar 

  98. Xu, H. T.; Liu, T. Y.; Bai, S. X.; Li, L. G.; Zhu, Y. M.; Wang, J.; Yang, S. Z.; Li, Y. F.; Shao, Q.; Huang, X. Q. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.

    Article  CAS  Google Scholar 

  99. Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

    Article  Google Scholar 

  100. Babu, D. D.; Huang, Y. Y.; Anandhababu, G.; Wang, X.; Si, R.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. J. Mater. Chem. A 2019, 7, 8376–8383.

    Article  CAS  Google Scholar 

  101. Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.

    Article  CAS  Google Scholar 

  102. **ng, Y. L.; Ku, J. G.; Fu, W.; Wang, L. Z.; Chen, H. H. Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125149.

    Article  CAS  Google Scholar 

  103. Yin, J.; **, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; **, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

    Article  CAS  Google Scholar 

  104. Zhou, Y. C.; López, N. The role of Fe species on NiOOH in oxygen evolution reactions. ACS Catal. 2020, 10, 6254–6261.

    Article  CAS  Google Scholar 

  105. Zhang, S.; Huang, B. L.; Wang, L. G.; Zhang, X. Y.; Zhu, H. S.; Zhu, X. Q.; Li, J.; Guo, S. J.; Wang, E. K. Boosted oxygen evolution reactivity via atomic iron do** in cobalt carbonate hydroxide hydrate. ACS Appl. Mater. Interfaces 2020, 12, 40220–40228.

    Article  CAS  Google Scholar 

  106. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  CAS  Google Scholar 

  107. Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; **, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090–15093.

    Article  CAS  Google Scholar 

  108. Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

    Article  CAS  Google Scholar 

  109. Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

    Article  CAS  Google Scholar 

  110. Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

    Article  Google Scholar 

  111. Dong, C. L.; Zhang, X. L.; Xu, J.; Si, R.; Sheng, J.; Luo, J.; Zhang, S. N.; Dong, W. J.; Li, G. B.; Wang, W. C. et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 2020, 16, 1905328.

    Article  CAS  Google Scholar 

  112. Baeumer, C.; Li, J.; Lu, Q. Y.; Liang, A. Y. L.; **, L.; Martins, H. P.; Duchoň, T.; Glöß, M.; Gericke, S. M.; Wohlgemuth, M. A. et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 2021, 20, 674–682.

    Article  CAS  Google Scholar 

  113. Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.

    Article  CAS  Google Scholar 

  114. Guan, J. Q.; Ding, C. M.; Chen, R. T.; Huang, B. K.; Zhang, X. W.; Fan, F. T.; Zhang, F. X.; Li, C. CoOx nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chem. Sci. 2017, 8, 6111–6116.

    Article  CAS  Google Scholar 

  115. Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

    Article  CAS  Google Scholar 

  116. Jiang, K.; Luo, M.; Peng, M.; Yu, Y. Q.; Lu, Y. R.; Chan, T. S.; Liu, P.; de Groot, F. M. F.; Tan, Y. W. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 2020, 11, 2701.

    Article  CAS  Google Scholar 

  117. Cai, C.; Han, S. B.; Wang, Q.; Gu, M. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano 2019, 13, 8865–8871.

    Article  CAS  Google Scholar 

  118. He, F.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Size-dependent electrocatalytic activity of ORR/OER on palladium nanoclusters anchored on defective MoS2 monolayers. New J. Chem. 2020, 44, 16135–16143.

    Article  CAS  Google Scholar 

  119. Wohlfahrt-Mehrens, M.; Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 251–260.

    Article  CAS  Google Scholar 

  120. Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015, 5, 12167.

    Article  CAS  Google Scholar 

  121. Grimaud, A.; Díaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

    Article  CAS  Google Scholar 

  122. Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Zhang, Q. Q.; Guan, J. Q. Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 2019, 9, 9897–9904.

    Article  CAS  Google Scholar 

  123. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    Article  CAS  Google Scholar 

  124. Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

    Article  CAS  Google Scholar 

  125. Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

    Article  CAS  Google Scholar 

  126. Wu, R. Y.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

    Article  CAS  Google Scholar 

  127. Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

    Article  CAS  Google Scholar 

  128. Banerjee, A.; Chakraborty, S.; Jena, N. K.; Ahuja, R. Scrupulous probing of bifunctional catalytic activity of borophene monolayer: Map** reaction coordinate with charge transfer. ACS Appl. Energy Mater. 2018, 1, 3571–3576.

    Article  CAS  Google Scholar 

  129. Mohajeri, A.; Dashti, N. L. Cooperativity in bimetallic SACs: An efficient strategy for designing bifunctional catalysts for overall water splitting. J. Phys. Chem. C 2019, 123, 30972–30980.

    Article  CAS  Google Scholar 

  130. Singh, Y.; Back, S.; Jung, Y. Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 2018, 20, 21095–21104.

    Article  CAS  Google Scholar 

  131. Xu, X. W.; Si, R. H.; Dong, Y.; Li, L. L.; Zhang, M. H.; Wu, X. Y.; Zhang, J.; Fu, K.; Guo, Y.; He, Y. Y. Borophene-supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: A density functional theory study. J. Mol. Model. 2021, 27, 67.

    Article  CAS  Google Scholar 

  132. Zeng, H. H.; Liu, X. Y.; Chen, F. B.; Chen, Z. G.; Fan, X. L.; Lau, W. Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER. ACS Appl. Mater. Interfaces 2020, 12, 52549–52559.

    Article  CAS  Google Scholar 

  133. Liu, N.; Duan, Z. Y.; Zhang, Q. Q.; Guan, J. Q. Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions. Chem. Eng. J. 2021, 419, 129567.

    Article  CAS  Google Scholar 

  134. Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

    Article  CAS  Google Scholar 

  135. Xu, X. P.; Xu, H. X.; Cheng, D. J. Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale 2019, 11, 20228–20237.

    Article  CAS  Google Scholar 

  136. Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

    Article  CAS  Google Scholar 

  137. Wang, Y.; Zheng, P.; Li, M. X.; Li, Y. R.; Zhang, X.; Chen, J.; Fang, X.; Liu, Y. J.; Yuan, X. L.; Dai, X. P. et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale 2020, 12, 9669–9679.

    Article  CAS  Google Scholar 

  138. **ong, D. H.; Zhang, Q. Q.; Li, W.; Li, J. J.; Fu, X. L.; Cerqueira, M. F.; Alpuim, P.; Liu, L. F. Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale 2017, 9, 2711–2717.

    Article  CAS  Google Scholar 

  139. Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; **ang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

    Article  CAS  Google Scholar 

  140. Zhang, X. P.; Dong, C. L.; Wang, Y. Q.; Chen, J.; Arul, K. T.; Diao, Z. D.; Fu, Y. M.; Li, M. T.; Shen, S. H. Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 57038–57046.

    Article  CAS  Google Scholar 

  141. Peng, X. Y.; Zhao, S. Z.; Mi, Y. Y.; Han, L. L.; Liu, X. J.; Qi, D. F.; Sun, J. Q.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 2020, 16, 2002888.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), and Natural Science Foundation of Jilin Province (No. 20180101291JC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **gqi Guan.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, J., Bai, X. & Tang, T. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 15, 818–837 (2022). https://doi.org/10.1007/s12274-021-3680-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3680-9

Keywords

Navigation