Log in

Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An effective electrocatalyst being highly active in all pH range for oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. However, most of the high-efficiency ORR catalysis was reported in alkaline conditions. Herein, we demonstrated the preparation of atomically dispersed Fe-Zn pairs anchored on porous N-doped carbon frameworks (Fe-Zn-SA/NC), which works efficiently as ORR catalyst in the whole pH range. It achieves high half-wave potentials of 0.78, 0.85 and 0.72 V in 0.1 M HClO4, 0.1 M KOH and 0.1 M phosphate buffer saline (PBS) solutions, respectively, as well as respectable stability. The performances are even comparable to Pt/C. Furthermore, when assembled into a Zn-air battery, the high power density of 167.2 mWcm−2 and 120 h durability reveal the feasibility of Fe-Zn-SA/NC in real energy-related devices. Theoretical calculations demonstrate that the superior catalytic activity of Fe-Zn-SA/NC can be contributed to the lower energy barriers of ORR at the Fe-Zn-N6 centers. This work demonstrates the potential of Fe-Zn pairs as alternatives to the Pt catalysts for efficient catalytic ORR and provides new insights of dual-atom catalysts for other energy conversion related catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    CAS  Google Scholar 

  2. Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

    CAS  Google Scholar 

  3. Tang, C.; Jiao, Y.; Shi, B. Y.; Liu, J. N.; **e, Z. H.; Chen, X.; Zhang, Q.; Qiao, S. Z. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts. Angew. Chem., Int. Ed. 2020, 132, 9256–9261.

    Google Scholar 

  4. Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

    CAS  Google Scholar 

  5. Hu, B. C.; Wu, Z. Y.; Chu, S. Q.; Zhu, H. W.; Liang, H. W.; Zhang, J.; Yu, S. H. SiO2-protected shell mediated templating synthesis of Fe-N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208–2215.

    CAS  Google Scholar 

  6. Li, Q. H.; Chen, W. X.; **ao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Google Scholar 

  7. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Google Scholar 

  8. Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.

    Google Scholar 

  9. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    CAS  Google Scholar 

  10. Bu, L. Z.; Shao, Q.; E, B.; Guo, J.; Yao, J. L.; Huang, X. Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2017, 139, 9576–9582.

    CAS  Google Scholar 

  11. Gu, W. L.; Hu, L. Y.; Li, J.; Wang, E. K. Hybrid of g-C3N4 assisted metal-organic frameworks and their derived high-efficiency oxygen reduction electrocatalyst in the whole pH range. ACS Appl. Mater. Interfaces 2016, 8, 35281–35288.

    CAS  Google Scholar 

  12. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  13. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev., in press, DOI: https://doi.org/10.1021/acs.chemrev.9b00818.

  14. **ong, Y.; Dong, J. C.; Huang, Z. Q.; **n, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; **, Z.; **ng, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

    CAS  Google Scholar 

  15. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Google Scholar 

  16. Zhang, C. H.; Sha, J. W.; Fei, H. L.; Liu, M. J.; Yazdi, S.; Zhang, J. B.; Zhong, Q. F.; Zou, X. L.; Zhao, N. Q.; Yu, H. S. et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 2017, 11, 6930–6941.

    CAS  Google Scholar 

  17. Xue, J. L.; Li, Y. S.; Hu, J. Nanoporous bimetallic Zn/Fe-N-C for efficient oxygen reduction in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 7145–7157.

    CAS  Google Scholar 

  18. Huo, J. J.; Lu, L.; Shen, Z. Y.; Liu, Y.; Guo, J. J.; Liu, Q. B.; Wang, Y.; Liu, H.; Wu, M. H.; Wang, G. X. A rational synthesis of single-atom iron-nitrogen electrocatalysts for highly efficient oxygen reduction reaction. J. Mater. Chem. A 2020, 8, 16271–16282.

    CAS  Google Scholar 

  19. Yang, H. Q.; Li, Z. Y.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. A complex-sequestered strategy to fabricate Fe single-atom catalyst for efficient oxygen reduction in a broad pH-range. Appl. Catal. B Environ. 2020, 278, 119270.

    CAS  Google Scholar 

  20. Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

    CAS  Google Scholar 

  21. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    CAS  Google Scholar 

  22. Wang, X. L.; Du, J.; Zhang, Q. H.; Gu, L.; Cao, L. J.; Liang, H. P. In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon 2020, 157, 614–621.

    CAS  Google Scholar 

  23. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y G.; Chen, W. X.; Zhang, P. P.; Zheng T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    CAS  Google Scholar 

  24. Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

    CAS  Google Scholar 

  25. Chen, Y.; Guo, R. J.; Peng, X. Y.; Wang, X. Q.; Liu, X. J.; Ren, J. Q.; He, J.; Zhuo, L. C.; Sun, J. Q.; Liu, Y. F. et al. Highly productive electrosynthesis of ammonia by admolecule-targeting single Ag sites. ACS Nano 2020, 14, 6938–6946.

    CAS  Google Scholar 

  26. Peng, X. Y.; Zhao, S. Z.; Mi, Y. Y.; Han, L. L.; Liu, X. J.; Qi, D. F.; Sun, J. Q.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Samll 2020, 16, 2002888.

    CAS  Google Scholar 

  27. Zhou, H.; Zhao, Y. F.; Xu, J.; Sun, H. R.; Li, Z. J.; Liu, W.; Yuan, T. W.; Liu, W.; Wang, X. Q.; Cheong, W. C. et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

    CAS  Google Scholar 

  28. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    CAS  Google Scholar 

  29. Zhang, H. B.; An, P. F.; Zhou, W.; Guan, B. Y.; Zhang, P.; Dong, J. C.; Lou, X. W. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.

    Google Scholar 

  30. Lü, F.; Zhao, S. Z.; Guo, R. J.; He, J.; Peng, X. Y.; Bao, H. H.; Fu, J. T.; Han, L. L.; Qi, G. C.; Luo, J. et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420–427.

    Google Scholar 

  31. Shang, H. S.; Jiang, Z. L.; Zhou, D. N.; Pei, J. J.; Wang, Y.; Dong, J. C.; Zheng, X. S.; Zhang, J. T.; Chen, W. X. Engineering a metal-organic framework derived Mn-N4-CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999.

    CAS  Google Scholar 

  32. Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443–5450.

    CAS  Google Scholar 

  33. Yu, L. J.; Yang, C. C.; Zhang, W. D.; Liu, W. Q.; Wang, H. F.; Qi, J. W.; Xu, L. Solvent-free synthesis of N-doped nanoporous carbon materials as durable high-performance pH-universal ORR catalysts. J. Colloid Interface Sci. 2020, 575, 406–415.

    CAS  Google Scholar 

  34. Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.

    CAS  Google Scholar 

  35. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    CAS  Google Scholar 

  36. Wang, Y. Y.; Zhang, G. X.; Ma, M.; Ma, Y.; Huang, J. K.; Chen, C.; Zhang, Y.; Sun, X. M.; Yan, Z. F. Ultrasmall NiFe layered double hydroxide strongly coupled on atomically dispersed FeCo-NC nanoflowers as efficient bifunctional catalyst for rechargeable Zn-air battery. Sci. China Mater. 2020, 63, 1182–1195.

    CAS  Google Scholar 

  37. Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

    CAS  Google Scholar 

  38. Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.

    CAS  Google Scholar 

  39. Xu, J.; Lai, S. H.; Hu, M.; Ge, S. M.; **e, R. C.; Li, F.; Hua, D. D.; Xu, H.; Zhou, H.; Wu, R. et al. Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods 2020, 4, 2000567.

    Google Scholar 

  40. Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

    CAS  Google Scholar 

  41. Xu, J.; He, J.; Ding, Y.; Luo, J. X-ray imaging of atomic nuclei. Sci. China Mater. 2020, 63, 1788–1796.

    CAS  Google Scholar 

  42. Gloter, A.; Ingrin, J.; Bouchet, D.; Colliex, C. Composition and orientation dependence of the O K and Fe L2,3 EELS fine structures in Ca2(ALxFe1−x)2O5. Phys. Rev. B 2000, 61, 2587–2594.

    CAS  Google Scholar 

  43. Guinel, M. J. F.; Brodusch, N.; Sha, G.; Shandiz, M. A.; Demers, H.; Trudeau, M.; Ringer, S. P.; Gauvin, R. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys. J. Microsc. 2014, 255, 128–137.

    CAS  Google Scholar 

  44. Liu, D.; Li, J. C.; Ding, S. C.; Lyu, Z. Y.; Feng, S.; Tian, H. Y.; Huyan, C. X.; Xu, M. J.; Li, T.; Du, D. et al. 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020, 4, 1900827.

    CAS  Google Scholar 

  45. Zhang, Z. P.; Sun, J. T.; Wang, F.; Dai, L. M. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem., Int. Ed. 2018, 57, 9038–9043.

    CAS  Google Scholar 

  46. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    CAS  Google Scholar 

  47. Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; **ng, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.

    CAS  Google Scholar 

  48. Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

    CAS  Google Scholar 

  49. Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

    CAS  Google Scholar 

  50. Wu, G.; Cui, G. F.; Li, D. Y.; Shen, P. K.; Li, N. Carbon-supported Co1.67Te2 nanoparticles as electrocatalysts for oxygenreduction reaction in alkaline electrolyte. J. Mater. Chem. 2009, 19, 6581–6589.

    CAS  Google Scholar 

  51. Xu, J.; Zhang, C. X.; Liu, H. X.; Sun, J. Q.; **e, R. C.; Qiu, Y.; Lü, F.; Liu, Y. F.; Zhuo, L. C.; Liu, X. J. et al. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020, 70, 104529.

    CAS  Google Scholar 

  52. Wang, Y.; Chen, A. R.; Lai, S. H.; Peng, X. Y.; Zhao, S. Z.; Hu, G. Z.; Qiu, Y.; Ren, J. Q.; Liu, X. J.; Luo, J. Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. J. Catal. 2020, 381, 78–83.

    CAS  Google Scholar 

  53. Wang, S. P.; Zhu, M. L.; Bao, X. B.; Wang, J.; Chen, C. H.; Li, H. R.; Wang, Y. Synthesis of mesoporous Fe-N/C materials with high catalytic performance in the oxygen reduction reaction. ChemCatChem 2015, 7, 2937–2944.

    CAS  Google Scholar 

  54. Liu, J.; Yin, J.; Feng, B.; Li, F.; Wang, F. One-pot synthesis of unprotected PtPd nanoclusters with enhanced catalytic activity, durability, and methanol-tolerance for oxygen reduction reaction. Appl. Surf. Sci. 2019, 473, 318–325.

    CAS  Google Scholar 

  55. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.

    Google Scholar 

  56. Wan, W. J.; Liu, X. J.; Li, H. Y.; Peng, X. Y.; **, D. S.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193–200.

    CAS  Google Scholar 

  57. Li, H. Y.; Wan, W. J.; Liu, X. J.; Liu, H. X.; Shen, S. B.; Lv, F.; Luo, J. Poplar-catkin-derived N, P-Co-doped carbon microtubes as efficient oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 2018, 5, 1113–1119.

    CAS  Google Scholar 

  58. Sun, Y. L.; Wang, J.; Liu, Q.; **a, M. R.; Tang, Y. F.; Gao, F. M.; Hou, Y. L.; Tse, J.; Zhao, Y. F. Itinerant ferromagnetic half metallic cobalt-iron couples: Promising bifunctional electrocatalysts for ORR and OER. J. Mater. Chem. A 2019, 7, 27175–27185.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (No. 2017YFA0700104), the National Natural Science Foundation of China (Nos. 22075211, 21601136, 51971157, 51761165012, and 62005173), Project funded by China Postdoctoral Science Foundation (No. 2020TQ0201), Tian** Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800). The authors also acknowledge National Supercomputing Center in Shenzhen for providing the computational resources and materials studio (version 7.0, DMol3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yifan Liu, Jia He or **jun Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lai, S., Qi, D. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 14, 1374–1381 (2021). https://doi.org/10.1007/s12274-020-3186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3186-x

Keywords

Navigation