Log in

Bioengineering for Salinity Tolerance in Plants: State of the Art

  • Reviews
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Genetic engineering of plants for abiotic stress tolerance is a challenging task because of its multifarious nature. Comprehensive studies for develo** abiotic stress tolerance are in progress, involving genes from different pathways including osmolyte synthesis, ion homeostasis, antioxidative pathways, and regulatory genes. In the last decade, several attempts have been made to substantiate the role of “single-function” gene(s) as well as transcription factor(s) for abiotic stress tolerance. Since, the abiotic stress tolerance is multigenic in nature, therefore, the recent trend is shifting towards genetic transformation of multiple genes or transcription factors. A large number of crop plants are being engineered by abiotic stress tolerant genes and have shown the stress tolerance mostly at laboratory level. This review presents a mechanistic view of different pathways and emphasizes the function of different genes in conferring salt tolerance by genetic engineering approach. It also highlights the details of successes achieved in develo** salt tolerance in plants thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CBL:

Calcineurin B-like protein

CIPK:

CBL-interacting protein kinases

NPK1:

Mitogen-activated protein kinase kinase kinase

NDPK2:

Nucleoside diphosphate kinase 2

SAPK4:

Sucrose nonfermenting 1-related protein kinase2 (SnRK2)

AtMEK1:

MAPK kinase

MYB:

Myeloblastoma

NAC:

No apical meristem, ATAF 1,2 and cup-shaped cotyledon

DRE:

Drought responsive element

DBF:

DRE binding factor

DREB:

Drought responsive element binding protein

TPS:

Trehalose-6-phosphate synthase

p5cs:

Δ1-Pyroline-5-carboxylate synthase

codA:

Choline oxidase

BADH:

Betaine aldehyde dehydrogenase

mt1D:

Mannitol-1-phosphate dehydrogenase

P5CR:

P5C reductase

GutD:

Glucitol-6-phosphate dehydrogenase

MIPS:

l-Myo-Inositol-1-phosphate synthase

APX:

Cytosolic ascorbate peroxidase

DHAR:

Dehydroascorbate reductase

MDHAR:

Mono DHAR

SOD:

Superoxide dismutase

ADC:

Arginine decarboxylase

ODC:

Ornithine decarboxylase

SAMDC:

S-Adenosyl methionine decaroboxylase

SPDS:

Spermidine Synthase

NHX-1:

Vacuolar Na+/H+ antiporter

SOS1:

Salt overly sensitive

TsVP:

H+-pyrophosphatase

HKT2:

High efficiency potassium transport

References

  1. Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress, achievements and limitations. Current Opinion in Biotechnology, 16, 123–132.

    Article  CAS  Google Scholar 

  2. Szabolcs, I. (1994). Salt affected soils as an ecosystems for halophytes. In V. R. Squires & A. T. Malcom (Eds.), Halophytes as a resource for livestock and for rehabilitation of degraded lands (pp. 19–24). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  3. Niu, X., Bressan, R. A., Hasegawa, P. M., & Pardo, J. M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.

    CAS  Google Scholar 

  4. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.

    Article  CAS  Google Scholar 

  5. Rajendran, K. A., Tester, M., & Roy, S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant, Cell and Environment, 32, 237–249.

    Article  CAS  Google Scholar 

  6. Agarwal, P. K., & Jha, B. (2010). Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biologia Plantarum, 54, 201–212.

    Article  CAS  Google Scholar 

  7. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221–227.

    Article  CAS  Google Scholar 

  8. Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2001). Transgenic approach toward develo** abiotic stress tolerance in plants. Proceedings of the Indian National Science Academy Part B, 67, 265–284.

    CAS  Google Scholar 

  9. Bhatnagar, P., Vadez, V., & Sharma, K. K. (2008). Transgenic approaches for abiotic stress tolerance in plants, retrospect and prospects. Plant Cell Reports, 7, 411–424.

    Article  CAS  Google Scholar 

  10. Ashraf, M., & Akram, N. A. (2009). Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances, 27, 744–752.

    Article  CAS  Google Scholar 

  11. Shao, H. B., Chu, L. Y., Lu, Z. H., & Kang, C. M. (2008). Primary antioxidant free radical scavenging and redox signalling pathways in higher plant cells. International Journal of Biological Sciences, 4, 8–14.

    Article  CAS  Google Scholar 

  12. Apse, M. P., & Blumwald, E. (2007). Na+ transport in plants. FEBS Letters, 581, 2247–2254.

    Article  CAS  Google Scholar 

  13. Gaxiola, R. A., Palmgren, M. G., & Schumacher, K. (2007). Plant proton pumps. FEBS Letters, 581, 2204–2214.

    Article  CAS  Google Scholar 

  14. Rodríguez-Rosales, M. P., Gálvez, F. J., Huertas, R., Aranda, M. N., Baghour, M., Cagnac, O., et al. (2009). Plant NHX cation/proton antiporters. Plant Signaling and Behavior, 4, 265–276.

    Article  Google Scholar 

  15. Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6, 441–445.

    Article  CAS  Google Scholar 

  16. Agarwal, P. K., Agarwal, P., Reddy, M. K., & Sopory, S. K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263–1274.

    Article  CAS  Google Scholar 

  17. Century, K., Reuber, T. L., & Ratcliffe, O. J. (2008). Regulating the regulators, the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiology, 147, 20–29.

    Article  CAS  Google Scholar 

  18. Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Engineering drought tolerance in plants, discovering and tailoring genes unlock the future. Current Opinion in Biotechnology, 17, 113–122.

    Article  CAS  Google Scholar 

  19. Knight, M. R., Campbell, A. K., Smith, S. M., & Trewavas, A. J. (1991). Transgenic aequorin reports the effects of touch and cold shock and elicitors on cytosolic calcium. Nature, 352, 524–526.

    Article  CAS  Google Scholar 

  20. Knight, H., Brandt, S., & Knight, M. R. (1998). A history of stress alters drought calcium signaling pathways in Arabidopsis. The Plant Journal, 16, 681–687.

    Article  CAS  Google Scholar 

  21. Reddy, V. S., & Reddy, A. S. (2004). Proteomics of calcium-signaling components in plants. Phytochemistry, 65, 1745–1776.

    Article  CAS  Google Scholar 

  22. Pardo, J. M., Reddy, M. P., Yang, S., Maggio, A., Huh, G. H., Matsumoto, T., et al. (1998). Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of the National Academy of Sciences of the United States of America, 96, 4718–4723. 54.

    Google Scholar 

  23. Liu, J., & Zhu, K. (1998). A calcium sensor homolog required for plant salt tolerance. Science, 280, 1943–1945.

    Article  CAS  Google Scholar 

  24. Wang, M., Gu, D., Liu, T., Wang, Z., Guo, X., Hou, W., et al. (2007). Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Molecular Biology, 65, 733–746.

    Article  CAS  Google Scholar 

  25. Tripathi, V., Parasuraman, B., Laxmi, A., & Chattopadhyay, D. (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 58, 778–790.

    Article  CAS  Google Scholar 

  26. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D. T., Lee, O., et al. (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 100, 358–363.

    Article  CAS  Google Scholar 

  27. Diédhiou, C. J., Popova, O. V., Dietz, K. J., & Golldack, D. (2008). The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biology, 8, 49.

    Article  CAS  Google Scholar 

  28. Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., et al. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Molecular Cell, 15, 141–152.

    Article  CAS  Google Scholar 

  29. Ichimura, K. (2002). Mitogen-activated protein kinase cascades in plants, a new nomenclature. Trends in Plant Science, 7, 301–308.

    Article  CAS  Google Scholar 

  30. **ong, L., & Yang, Y. (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid‐inducible mitogen‐activated protein kinase. The Plant Cell, 5, 745–759.

    Article  CAS  Google Scholar 

  31. Jeong, M. J., Lee, S. K., Kim, B. G., Kwon, T. R., Cho, W. S., Park, Y. T., et al. (2006). A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell, Tissue and Organ Culture, 85, 151–160.

    Article  CAS  Google Scholar 

  32. Kong, X., Pan, J., Zhang, M., **ng, X., Zhou, Y., Liu, Y., et al. (2011). ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant, Cell and Environment, 34, 1291–1303.

    Article  CAS  Google Scholar 

  33. Wurzinger, B., Mair, A., Pfister, B., & Teige, M. (2011). Cross-talk of calcium dependent protein kinase and MAP kinase signaling. Plant Signaling and Behavior, 6, 8–12.

    Article  CAS  Google Scholar 

  34. Capiati, D. A., Pais, S. M., & Tellez-Inon, M. T. (2006). Wounding increases salt tolerance in tomato plants: Evidence on the participation of calmodulin-like activities in crosstolerance signalling. Journal of Experimental Botany, 57, 2391–2400.

    Article  CAS  Google Scholar 

  35. Reichmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. Z., Keddie, J., et al. (2000). Arabidopsis transcription factors, genome-wide comparative analysis among eukaryotes. Science, 290, 2105–2110.

    Article  Google Scholar 

  36. Shiu, S. H., Shih, M. C., & Li, W. H. (2005). Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiology, 139, 18–26.

    Article  CAS  Google Scholar 

  37. Shinozaki, K., & Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature, differences and cross talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217–223.

    CAS  Google Scholar 

  38. Grotewold, E. (2008). Transcription factors for predictive plant metabolic engineering: Are we there yet? Current Opinion in Biotechnology, 19, 138–144.

    Article  CAS  Google Scholar 

  39. Lata, C. & Prasad, M. (2011). Role of DREBs in regulation of abiotic stress responses in plants. Journal of Experimental Botany. doi:10.1093/jxb/err210.

  40. Gupta, K., Agarwal, P. K., Reddy, M. K., & Jha, B. (2010). SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Reports, 29, 1131–1137.

    Article  CAS  Google Scholar 

  41. Olsen, A. N., Ernst, H. A., Leggio, L. L., & Skriver, K. (2005). NAC transcription factors, structurally distinct, functionally diverse. Trends in Plant Science, 10, 79–87.

    Article  CAS  Google Scholar 

  42. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis, an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9, 841–857.

    Article  CAS  Google Scholar 

  43. Souer, E., van Houwelingen, A., Kloos, D., Mol, J., & Koes, R. (1996). The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85, 159–170.

    Article  CAS  Google Scholar 

  44. He, C., Yan, J., Shen, G., Fu, L., Scott, H. A., Auld, D., et al. (2005). Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology, 46, 1848–1854.

    Article  CAS  Google Scholar 

  45. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., et al. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 39, 863–876.

    Article  CAS  Google Scholar 

  46. Tran, L. S., Nakashima, K., Sakuma, Y., Osakabe, Y., Qin, F., Simpson, S. D., et al. (2007). Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. The Plant Journal, 49, 46–63.

    Article  CAS  Google Scholar 

  47. Nakashima, K., Tran, L. S. P., Nguyen, D. V., Fujita, M., Maruyama, K., Todaka, D., et al. (2007). Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 51, 617–630.

    Article  CAS  Google Scholar 

  48. Tran, L. S. P., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., et al. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 Promoter. The Plant Cell, 16, 2481–2498.

    Article  CAS  Google Scholar 

  49. Hu, H., Dai, M., Yao, J., **ao, B., Li, X., Zhang, Q., et al. (2006). Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 12987–12992.

    Article  CAS  Google Scholar 

  50. Hu, H., You, J., Fang, Y., Zhu, X., Qi, Z., & **ong, L. (2008). Characterization of a transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 67, 169–181.

    Article  CAS  Google Scholar 

  51. Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M., et al. (2009). Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta, 229, 1065–1075.

    Article  CAS  Google Scholar 

  52. Hao, Y. J., Wei, W., Song, Q. X., Chen, H. W., Zhang, Y. Q. Wang, F., et al. (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal. 68, 302–313.

    Google Scholar 

  53. Liu, Q. L., Xu, K. D., Zhao, L. J., Pan, Y. Z., Jiang, B. B., Zhang, H. Q., et al. (2011). Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnology Letters. 33, 2073–2082.

    Google Scholar 

  54. Song, S. Y., Chen, Y., Chen, J., Dai, X. Y., & Zhang, W. H. (2011). Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta, 234, 331–345.

    Article  CAS  Google Scholar 

  55. Takahashi, R., Liu, S., & Takano, T. (2009). Isolation and characterization of plasma membrane Na+/H+ antiporter genes from salt-sensitive and salt-tolerant reed plants. Journal of Plant Physiology, 166, 301–309.

    Article  CAS  Google Scholar 

  56. Liu, X., Hong, L., Li, X. Y., Yao, Y., Hu, B., & Li, L. (2011). Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Bioscience, Biotechnology, and Biochemistry, 3, 443–450.

    Article  CAS  Google Scholar 

  57. Yanhui, C., **aoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., et al. (2006). The MYB transcription factor superfamily of Arabidopsis: Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 60, 107–124.

    Article  CAS  Google Scholar 

  58. Dai, X. Y., Xu, Y. Y., Ma, Q. B., Xu, W. Y., Wang, T., Xue, Y. B., et al. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology, 143, 1739–1751.

    Article  CAS  Google Scholar 

  59. Jung, C., Seo, J. S., Han, S. W., Koo, Y. J., Kim, C. H., Song, S. I., et al. (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology, 146, 623–635.

    Article  CAS  Google Scholar 

  60. Liao, Y., Zou, H. F., Wang, H. W., Zhang, W. K., Ma, B., Zhang, J. S., et al. (2008). Soybean GmMYB76, GmMYB92 and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Research, 18, 1047–1060.

    Article  CAS  Google Scholar 

  61. Gao, J. J., Zhang, Z., Peng, R. H., **ong, A. S., Xu, J., Zhu, B., et al. (2010). Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Molecular Biology Reports, 38, 205–211.

    Article  CAS  Google Scholar 

  62. Mao, X., Jia, D., Li, A., Zhang, H., Tian, S., Zhang, X., et al. (2011). Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Functional & Integrative Genomics. 11, 445–465.

    Google Scholar 

  63. Liu, H., Zhou X., Dong, N., Liu, X., Zhang, H., Zhang, Z. (2011). Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Functional & Integrative Genomics. 11, 431–443.

    Google Scholar 

  64. AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. The Plant Journal, 58, 347–360.

    Article  CAS  Google Scholar 

  65. Iturriaga, G., Suarez, R., & Nova-Franco, B. (2009). Trehalose metabolism, from osmoprotection to signaling. International Journal of Molecular Sciences, 10, 3793–3810.

    Article  CAS  Google Scholar 

  66. Holmström, K. O., Welin, B., Mandal, A., Kristiansdottir, I., Teeri, T. H., Lamark, T., et al. (1996). Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for synthesis of the osmoprotectant glycine betaine in transgenic plants. The Plant Journal, 5, 749–758.

    Google Scholar 

  67. Pilon-Smits, E. A. H., Terry, N., Sears, T., Kim, H., Zayed, A., Hwang, S., et al. (1998). Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. Journal of Plant Physiology, 152, 525–532.

    Article  CAS  Google Scholar 

  68. Miranda, J. A., Avonce, N., Suárez, R., Thevelein, J. M., van Dijck, P., & Iturriaga, G. (2007). A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta, 226, 1411–1421.

    Article  CAS  Google Scholar 

  69. Suarez, R., Calderón, C., & Iturriaga, G. (2009). Improved tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Science, 49, 1791–1799.

    Article  CAS  Google Scholar 

  70. Cortina, C., & Culianez-Macia, F. A. (2005). Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science, 169, 75–82.

    Article  CAS  Google Scholar 

  71. Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Choi, Y. D., Kochian, L. V., et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America, 99, 15898–15903.

    Article  CAS  Google Scholar 

  72. Li, H. W., Zang, B.S., Deng, X. W., Wang, X. P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 234, 1007–1018.

    Google Scholar 

  73. Thomas, J. C., Sepahi, M., Arendall, B., & Bohnert, H. J. (1995). Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant, Cell and Environment, 18, 801–806.

    Article  CAS  Google Scholar 

  74. Karakas, B., Ozias Akins, P., Stushnoff, C., Suefferheld, M., & Rieger, M. (1997). Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant, Cell and Environment, 20, 609–616.

    Article  Google Scholar 

  75. Abebe, T., Guenzi, A. C., Martin, B., & Cushman, J. C. (2003). Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology, 131, 1748–1755.

    Article  CAS  Google Scholar 

  76. Molinari, H. B. C., Marur, C. J., Bespalhok, F. J. C., Kobayashi, A. K., Pileggi, M., Leite, R. P., Jr., et al. (2004). Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb × Poncirus trifoliate L. Raf) overproducing proline. Plant Science, 167, 1375–1381.

    Article  CAS  Google Scholar 

  77. Zhu, X., Gong, H., Chen, G., Wang, S., & Zhang, C. (2005). Different solute levels in two spring wheat cultivars induced by progressive field water stress at different developmental stages. Journal of Arid Environments, 62, 1–14.

    Article  Google Scholar 

  78. Kavi Kishore, P. B., Hong, Z., Miao, G. H., Hu, C. A., & Verma, D. P. S. (1995). Overexpression of pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 108, 1387–1394.

    Google Scholar 

  79. Hong, Z., Lakkineni, K., Zhang, K., & Verma, D. P. S. (2000). Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology, 122, 1129–1136.

    Article  CAS  Google Scholar 

  80. Zhu, B., Su, J., Chang, M. C., Verma, D. P. S., Fan, Y. L., & Wu, R. (1998). Overexpression of a pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Science, 139, 41–48.

    Article  CAS  Google Scholar 

  81. Su, J., & Wu, R. (2004). Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, 166, 941–948.

    Article  CAS  Google Scholar 

  82. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters, 461, 205–210.

    Article  CAS  Google Scholar 

  83. Ma, L., Zhou, E., Gao, L., Mao, X., Zhou, R., & Jia, J. (2008). Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). The South African Journal of Botany, 74, 705–712.

    Article  CAS  Google Scholar 

  84. Rhodes, D., & Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology, 44, 357–384.

    CAS  Google Scholar 

  85. Holmstrom, K. O., Somersalo, S., Mandal, A., Palva, T. E., & Welin, B. (2000). Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany, 51, 177–185.

    Article  CAS  Google Scholar 

  86. Brouquisse, R., Weigel, P., Rhodes, D., Yocum, C. F., & Hanson, A. D. (1989). Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiology, 90, 322–329.

    Article  CAS  Google Scholar 

  87. Weigel, P., Weretilnyk, E. A., & Hanson, A. D. (1986). Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiology, 82, 753–759.

    Article  CAS  Google Scholar 

  88. Lamark, T., Kaasen, I., Eshoo, M. W., Falkenberg, P., McDougall, J., & Strem, A. R. (1991). DNA sequence and analysis of bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Molecular Microbiology, 5, 1049–1064.

    Article  CAS  Google Scholar 

  89. Bhattacharya, R. C., Maheswari, M., Dineshkumar, V., Kirti, P. B., Bhat, S. R., & Chopra, V. L. (2004). Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Scientia Horticulturae, 100, 215–227.

    Article  CAS  Google Scholar 

  90. Quan, R., Shang, M., Zhang, H., Zhao, Y., & Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnology Journal, 2, 477–486.

    Article  CAS  Google Scholar 

  91. Cherian, S., Reddy, M. P., & Ferreira, R. B. (2006). Transgenic plants with improved dehydration-stress tolerance: Progress and future prospects. Biologia Plantarum, 50, 481–495.

    Article  CAS  Google Scholar 

  92. Smirnoff, N. (1998). Plant resistance to environmental stress. Current Opinion in Biotechnology, 9, 214–219.

    Article  CAS  Google Scholar 

  93. Bartels, D. (2001). Targeting detoxification pathways, an efficient approach to obtain plants with multiple stress tolerance. Trends in Plant Science, 6, 284–286.

    Article  CAS  Google Scholar 

  94. Apel, K., & Hirt, H. (2004). Reactive oxygen species, metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  95. Miller, G., Suzuki, N., Yilmaz, S. C., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33, 453–467.

    Article  CAS  Google Scholar 

  96. Suzuki, N., Koussevitzky, S., Mittler, R., & Miller, G. (2011). ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell and Environment, 35, 259–270.

    Google Scholar 

  97. Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84–93.

    Article  CAS  Google Scholar 

  98. Sun, W. H., Duan, M., Yang, D. F. S. S., & Meng, Q. W. (2010). Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Reports, 29, 917–926.

    Article  CAS  Google Scholar 

  99. Badawi, G. H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., et al. (2004). Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum, 121, 231–238.

    Article  CAS  Google Scholar 

  100. Lu, Z. Q., Liu, D. L., & Liu, S. K. (2007). Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Reports, 26, 1909–1917.

    Article  CAS  Google Scholar 

  101. Kavitha, K., Venkataraman, G., & Parida, A. (2008). An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina, molecular and functional characterization. Plant Physiology and Biochemistry, 46, 794–804.

    Article  CAS  Google Scholar 

  102. Sengupta, A., Heinen, J., Holaday, A. S., Barke, J. J., & Allan, R. D. (1993). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 90, 1629–1633.

    Article  CAS  Google Scholar 

  103. Prashanth, S. R., Sadhasivam, V., & Parida, A. (2008). Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research, 17, 281–291.

    Article  CAS  Google Scholar 

  104. Wang, Y., Ying, Y., Chen, J., & Wang, X. (2004). Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 167, 671–677.

    Article  CAS  Google Scholar 

  105. Lee, Y. P., Kim, S. H., Bang, J. W., Lee, H. S., Kwak, S. S., & Kwon, S. Y. (2007). Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Reports, 26, 591–598.

    Article  CAS  Google Scholar 

  106. Lee, Y. P., Baek, K. H., Lee, H. S., Kwak, S. S., Bang, J. W., & Kwon, S. Y. (2010). Tobacco seeds simultaneously over-expressing Cu/Zn superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. Journal of Experimental Botany, 61, 2499–2506.

    Article  CAS  Google Scholar 

  107. Roxas, V. P., Smith, R. K., Jr., Allen, E. R., & Allen, R. D. (1997). Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 15, 988–991.

    Article  CAS  Google Scholar 

  108. Roxas, V. P., Lodhi, S. A., Garrett, D. K., Mahan, J. R., & Allen, R. D. (2000). Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant and Cell Physiology, 41, 1229–1234.

    Article  CAS  Google Scholar 

  109. Igarashi, K., & Kashiwagi, K. (2000). Polyamines, mysterious modulators of cellular functions. Biochemical and Biophysical Research Communications, 271, 559–564.

    Article  CAS  Google Scholar 

  110. Alcazar, R., Altabella, T., Bortolotti, F. M. C., Koncz, M. R. C., Carrasco, P., & Tiburcio, A. F. (2010). Polyamines, molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231, 1237–1249.

    Article  CAS  Google Scholar 

  111. Gill, S., & Tuteja, N. (2010). Polyamines and abiotic stress tolerance in plants. Plant Signaling and Behavior, 5, 26–33.

    Article  CAS  Google Scholar 

  112. Minocha, S. C., & Sun, D. Y. (1997). Stress tolerance in plants through transgenic manipulation of polyamine biosynthesis. Plant Physiology Supplement, 114, 297 (Abstract #1552).

    Google Scholar 

  113. Kumria, R., & Rajam, M. V. (2002). Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. Journal of Plant Physiology, 159, 983–990.

    Article  CAS  Google Scholar 

  114. Roy, M., & Wu, R. (2001). Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science, 160, 869–875.

    Article  CAS  Google Scholar 

  115. Waie, B., & Rajam, M. V. (2003). Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science, 164, 727–734.

    Article  CAS  Google Scholar 

  116. Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 6896–6901.

    Article  CAS  Google Scholar 

  117. Shi, H., Lee, B. H., Wu, S. J., & Zhu, J. K. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 21, 81–85.

    Article  CAS  Google Scholar 

  118. Gaxiola, R. A., Rao, R., Sherman, A., Grifasi, P., Alpier, S. L., & Fink, G. R. (1999). The Arabidopsis thaliana proton transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proceedings of the National Academy of Sciences of the United States of America, 96, 1480–1485.

    Article  CAS  Google Scholar 

  119. Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 285, 1256–1258.

    Article  CAS  Google Scholar 

  120. Chauhan, S., Forsthoefel, N., Ran, Y., Quigley, F., Nelson, D. E., & Bohnert, H. J. (2000). Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. The Plant Journal, 24, 511–522.

    Article  CAS  Google Scholar 

  121. Hamada, A., Shono, M., **a, T., Ohta, M., Hayashi, Y., Tanaka, A., et al. (2001). Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Molecular Biology, 46, 35–42.

    Article  CAS  Google Scholar 

  122. Ma, X. L., Zhang, Q., Shi, H. Z., Zhu, J. K., Zhao, Y. X., Ma, C. L., et al. (2004). Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biologia Plantarum, 48, 219–225.

    Article  CAS  Google Scholar 

  123. **a, T., Apse, M. P., Aharon, G. S., & Blumwald, E. (2002). Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiologia Plantarum, 116, 206–212.

    Article  CAS  Google Scholar 

  124. Jha, A., Joshi, M., Yadav, N. S., Agarwal, P. K., & Jha, B. (2010). Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Molecular Biology Reports, 38, 1965–1973.

    Article  CAS  Google Scholar 

  125. Bordas, M., Montesinos, C., Dabauza, M., Salvador, A., Roig, L. A., Serrano, R., et al. (1997). Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. Cultivars and in vitro evaluation of salt tolerance. Transgenic Research, 6, 41–50.

    Article  CAS  Google Scholar 

  126. Gisbert, C., Rus, A. M., Bolarin, M. C., Lopez-Coronado, M., Arrillaga, I., Montesinos, C., et al. (2000). The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology, 123, 393–402.

    Article  CAS  Google Scholar 

  127. Shi, H., **ong, L., Stevenson, B., Lu, T., & Zhu, J. K. (2002). The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. The Plant Cell, 14, 575–588.

    Article  CAS  Google Scholar 

  128. Qiu, Q. S., Guo, Y., Quintero, F. J., Pardo, J. M., Schumaker, K. S., & Zhu, J. K. (2004). Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly sensitive (SOS) pathway. Journal of Biological Chemistry, 279, 207–215.

    Article  CAS  Google Scholar 

  129. Gao, X. Z., Zhao, R. Y., & Zhang, H. (2003). Overexpression of SOD2 increases salt tolerance of Arabidopsis. Plant Physiology, 133, 1873–1881.

    Article  CAS  Google Scholar 

  130. Wu, L., Fan, Z., Guo, L., Li, Y., Chen, Z. L., & Qu, L. J. (2005). Overexpression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Science, 168, 297–302.

    Article  CAS  Google Scholar 

  131. Oh, D. H., Leidi, E., Zhang, Q., Hwang, S. M., Li, Y., Quintero, F. J., et al. (2009). Loss of halophytism by interference with SOS1 expression. Plant Physiology, 151, 210–222.

    Article  CAS  Google Scholar 

  132. Yang, Q., Chen, Z. Z., Zhou, X. F., Yin, H. B., Li, X., **n, X. F., et al. (2009). Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant, 2, 22–31.

    Article  CAS  Google Scholar 

  133. Brini, F., Hanin, M., Mezghani, I., Berkowitz, G. A., & Masmoudi, K. (2007). Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. Journal of Experimental Botany, 58, 301–308.

    Article  CAS  Google Scholar 

  134. Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., de Larrinoa, I. F., Leube, M. P., et al. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.

    CAS  Google Scholar 

  135. Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., et al. (2001). Drought-and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proceedings of the National Academy of Sciences of the United States of America, 98, 11444–11449.

    Article  CAS  Google Scholar 

  136. Deswal, R., Chakravarty, T. N., & Sopory, S. K. (1993). The glyoxalase system in higher plants, regulation in growth and differentiation. Biochemical Society Transactions, 21, 527–530.

    CAS  Google Scholar 

  137. Paulus, C., Knollner, B., & Jacobson, H. (1993). Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. Planta, 189, 561–566.

    Article  CAS  Google Scholar 

  138. Espartero, J., Sanchez-Aguayo, I., & Pardo, J. M. (1995). Molecular characterization of glyoxalase I from a higher plant, upregulation by stress. Plant Molecular Biology, 29, 1223–1233.

    Article  CAS  Google Scholar 

  139. Veena, Reddy, V. S., & Sopory, S. K. (1999). Glyoxalase I from Brassica juncea, molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. The Plant Journal, 17, 385–395.

    Article  CAS  Google Scholar 

  140. Jain, M., Choudhary, D., Kale, R. K., & Bhalla-Sarin, N. (2002). Salt-and glyphosate-induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiologia Plantarum, 114, 499–505.

    Article  CAS  Google Scholar 

  141. Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2003). Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proceedings of the National Academy of Sciences of the United States of America, 100, 14672–14677.

    Article  CAS  Google Scholar 

  142. Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M. K., & Sopory, S. K. (2008). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Research, 17, 171–180.

    Article  CAS  Google Scholar 

  143. Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12, 301–309.

    Article  CAS  Google Scholar 

  144. Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16, 2001–2019.

    Article  CAS  Google Scholar 

  145. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  Google Scholar 

  146. Jones-Rhoades, M. W., & Bartel, D. P. (2004). Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Molecular Cell, 14, 787–799.

    Article  CAS  Google Scholar 

  147. Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 17, 2186–2203.

    Article  CAS  Google Scholar 

  148. Shukla, L. I., Chinnusamy, V., & Sunkar, R. (2008). The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochimica et Biophysica Acta, 1779, 743–748.

    Article  CAS  Google Scholar 

  149. Sunkar, R., Kapoor, A., & Zhu, J. K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 18, 2415.

    Article  CAS  Google Scholar 

  150. Zhao, B., Liang, R., Ge, L., Li, W., **ao, H., Lin, H., et al. (2007). Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications, 354, 585–590.

    Article  CAS  Google Scholar 

  151. Kulcheski, F. R., de Oliveira, L. F., Molina, L. G., Almerao, M. P., Rodrigues, F. A., Marcolino, J., et al. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 12, 307.

    Article  CAS  Google Scholar 

  152. Covarrubias, A. A., & Reyes, J. L. (2009). Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell and Environment, 33, 481–489.

    Article  CAS  Google Scholar 

  153. Sunkar, R. (2010). MicroRNAs with macro-effects on plant stress responses. Seminars in Cell & Developmental Biology, 2, 1805–1811.

    Google Scholar 

  154. Lu, S., Sun, Y. H., & Chiang, V. L. (2008). Stress-responsive microRNAs in Populus. The Plant Journal, 55, 131–151.

    Article  CAS  Google Scholar 

  155. Zhao, B. T., Ge, L. F., Liang, R. Q., Li, W., Ruan, K. C., Lin, H. X., et al. (2009). Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Molecular Biology, 10, 29.

    Article  CAS  Google Scholar 

  156. Feng, X. M., You, C. X., Qiao, Y., Mao, K., & Hao, Y. J. (2010). Ectopic overexpression of Arabidopsis AtmiR393a gene changes auxin sensitivity and enhances salt resistance in tobacco. Acta Physiologia Plantarum, 32, 997–1003.

    Article  CAS  Google Scholar 

  157. Gao, P., Bai, X., Yang, L., Lv, D., Li, Y., Cai, H., et al. (2010). Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta, 231, 991–1001.

    Article  CAS  Google Scholar 

  158. Gao, P., Bai, X., Yang, L., Lv, D., Pan, X., Li, Y., et al. (2011). osa-MIR393: A salinity- and alkaline stress-related microRNA gene. Molecular Biology Reports, 38, 237–242.

    Article  CAS  Google Scholar 

  159. **a, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., et al. (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS ONE. doi:10.1371/journal.pone.0030039.

  160. Liu, D., Song, Y., Chen, Z., & Yu, D. (2009). Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum, 136(2), 223–236.

    Article  CAS  Google Scholar 

  161. Wang, F., Liu, R., Wu, G., Lang, C., Chen, J., & Shi, C. (2012). Specific downregulation of the bacterial-type PEPC gene by artificial MicroRNA improves salt tolerance in Arabidopsis. Plant Molecular Biology Reporter. doi:10.1007/s11105-012-0418-6.

  162. Kim, J. Y., Lee, H. J., Jung, H. J., Maruyama, K., Suzuki, N., & Kang, H. (2010). Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. Planta, 232, 1447–1454.

    Article  CAS  Google Scholar 

  163. Xue, Z. Y., Zhi, D. Y., Xue, G. P., Zhang, H., Zhao, Y. H., & **a, G. M. (2004). Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science, 167, 849–859.

    Article  CAS  Google Scholar 

  164. Waterer, D., Benning, N. T., Wu, G., Luo, X., Liu, X., Gusta, M., et al. (2010). Evaluation of abiotic stress tolerance of genetically modified potatoes (Solanum tuberosum cv. Desiree). Molecular Breeding, 25, 527–540.

    Article  CAS  Google Scholar 

  165. Cheong, Y. H., Sung, S. J., Kim, B. Gi., Pandey, G. K., Cho, J. S., Kim, K. N., et al. (2010). Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Molecules and Cells, 29, 159–165.

    Article  CAS  Google Scholar 

  166. **ng, Y., Jia, W., & Zhang, J. (2007). AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. Journal of Experimental Botany, 58, 2969–2981.

    Article  CAS  Google Scholar 

  167. Ning, J., Li, X., Hicks, L. M., & **ong, L. (2010). A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiology, 152, 876–890.

    Article  CAS  Google Scholar 

  168. **ang, Y., Huang, Y., & **ong, L. (2007). Characterization of stress responsive CIPK genes in rice for stress tolerance improvement. Plant Physiology, 144, 1416–1428.

    Article  CAS  Google Scholar 

  169. Xu, J., Tian, Y. S., Peng, R. H., **ong, A. S., Zhu, B., **, X. F., et al. (2010). AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta, 231, 1251–1260.

    Article  CAS  Google Scholar 

  170. Kovtun, Y., Chiu, W. L., Tena, G., & Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America, 97, 2940–2945.

    Article  CAS  Google Scholar 

  171. Shou, H., Bordallo, P., & Wang, K. (2004). Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. Journal of Experimental Botany, 55, 1013–1019.

    Article  CAS  Google Scholar 

  172. Ying, S., Zhang, D. F. Li, H. Y., Liu, Y. H., Shi, Y. S., Song, Y. C., et al. (2011). Isolation and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Reports. doi:10.1007/s00299-011-1077-z.

  173. Zhang, L., **, D., Li, S., Gao, Z., Zhao, S., Shi, J., et al. (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Molecular Biology. doi:10.1007/s11103-011-9788-7.

  174. Xu, G. Y., Rocha, P. S. C. F., Wang, M. L., Xu, M. L., Cui, Y. C., Li, L. Y., et al. (2011). A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 234, 47–59. doi:10.1007/s00425-011-1386-z.

    Article  CAS  Google Scholar 

  175. Zhang, H., Mao, X., Wang, C. & **g, R. (2010). Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLOS ONE. doi:10.1371/journal.pone.0016041.g006.

  176. James, V. A., Neibaur, I., & Altpeter, F. (2008). Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Research, 17, 93–104.

    Article  CAS  Google Scholar 

  177. Liu, N., Zhong, N. Q., Wang, G. L., Li, L. J., Liu, X. L., He, Y. K., et al. (2007). Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta, 226, 827–838.

    Article  CAS  Google Scholar 

  178. Bhatnagar, P., Devi, M. J., Reddy, D. S., Lavanya, M., Vadez, V., Serraj, R., et al. (2007). Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Reports, 26, 2071–2082.

    Article  CAS  Google Scholar 

  179. Xu, Z. S., **a, L. Q., Chen, M., Cheng, X. G., Zhang, R. Y., Li, L. C., et al. (2007). Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 65, 719–732.

    Article  CAS  Google Scholar 

  180. Zhao, J. S., Ren, W., Zhi, D., Wang, L., & **a, G. (2007). Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Reports, 26, 1521–1528.

    Article  CAS  Google Scholar 

  181. Tong, Z., Hong, B., Yang, Y., Li, Q., Ma, N., Ma, C., et al. (2009). Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Molecular Biology, 71, 115–129.

    Article  CAS  Google Scholar 

  182. Xu, Z. S., Ni, Z. Y., Li, Z. Y., Li, L. C., Chen, M., Gao, D. Y., et al. (2009). Isolation and functional characterization of HvDREB1, a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. Journal of Plant Research, 122, 121–130.

    Article  CAS  Google Scholar 

  183. Chen, J., **a, X., & Yin, W. (2009). Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochemical and Biophysical Research Communications, 378, 483–487.

    Article  CAS  Google Scholar 

  184. Agarwal, P., Agarwal, P. K., Joshi, A. J., Reddy, M. K., & Sopory, S. K. (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 37, 1125–1135.

    Article  CAS  Google Scholar 

  185. Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., et al. (2010). Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 283, 185–196.

    Article  CAS  Google Scholar 

  186. Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L. S. P., et al. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. The Plant Journal, 50, 54–59.

    Article  CAS  Google Scholar 

  187. Chen, M., Wang, Q. Y., Cheng, X. G., Xu, Z. S., Li, L. C., Ye, X. G., et al. (2007). GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 353, 299–305.

    Article  CAS  Google Scholar 

  188. Gao, S. Q., Chen, M., **a, L. Q., **u, H. J., Xu, Z. S., Li, L. C., et al. (2009). A cotton (Gossypium hirsutum) DREB-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Reports, 28, 301–311.

    Article  CAS  Google Scholar 

  189. Zhang, Y., Chen, C., **, X. F., **ong, A. S., Peng, R. H., Hong, Y. H., et al. (2009). Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Biochemistry and Molecular Biology Reports, 42, 486–492.

    CAS  Google Scholar 

  190. Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 18822–18827.

    Article  CAS  Google Scholar 

  191. Wang, Q., Guan, Y., Wu, Y., Chen, H., Chen, F., & Chu, C. (2008). Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology, 67, 589–602.

    Article  CAS  Google Scholar 

  192. Morran, S., Eini, O., Pyvovarenko, T., Parent, B., Singh, R., Ismagul, A., et al. (2011). Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnology Journal, 9, 230–249.

    Article  CAS  Google Scholar 

  193. **anjun, P., **ngyong, M., Weihong, F., Man, S., Liqin, C., Alam, I., et al. (2011). Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Reports, 30, 1493–1502.

    Google Scholar 

  194. Li, D., Zhang, Y., Hu, X., Shen, X., Ma, L., Su, Z., et al. (2011). Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biology, 11, 109.

    Article  CAS  Google Scholar 

  195. Siddiqua, M., & Nassuth, A. (2011). Vitis CBF1 and Vitis CBF4 differ in their effect on Arabidopsis abiotic stress tolerance, development and gene expression. Plant, Cell and Environment. doi:10.1111/j.1365-3040.2011.02334.x.

  196. Zhang, G., Chen, M., Li, L., Xu, Z., Chen, X., Guo, J., et al. (2009). Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60, 3781–3796.

    Article  CAS  Google Scholar 

  197. Villalobos, M. A., Bartels, D., & Iturriaga, G. (2004). Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene. Plant Physiology, 135, 309–324.

    Article  CAS  Google Scholar 

  198. Park, M. Y., Kang, J. Y., & Kim, S. Y. (2011). Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Molecules and Cells, 31, 447–454. doi:10.1007/s10059-011-0300-7.

    Article  CAS  Google Scholar 

  199. Kim, S. G., Lee, A. K., Yoon, H. K., & Park, C. M. (2008). A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. The Plant Journal, 55, 77–88.

    Article  CAS  Google Scholar 

  200. Xue, G. P., Way, H. M., Richardson, T., Drenth, J., Joyce, P. A., & McIntyre, C. L. (2011). Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 1–16.

  201. Majee, M., Maitra, S., Dastidar, K. G., Pattnaik, S., Chatterjee, A., Hait, N. C., et al. (2004). A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice, molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. Journal of Biological Chemistry, 279, 28539–28552.

    Article  CAS  Google Scholar 

  202. Tang, W., Peng, X., & Newton, R. J. (2005). Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiology and Biochemistry, 43, 139–146.

    Article  CAS  Google Scholar 

  203. Sawahel, W. A., & Hassan, A. H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnology Letters, 24, 721–725.

    Article  CAS  Google Scholar 

  204. Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savoure, A., & Jaoua, S. (2005). Overexpression of Δ1–pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science, 169, 746–752.

    Article  CAS  Google Scholar 

  205. Hayashi, H., Alia, L., Mustardy, P., Deshnium, M. I., & Murata, N. (1997). Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J., 12, 133–142.

    Article  CAS  Google Scholar 

  206. Sakamoto, A., Alia, H., & Murata, N. (1998). Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology, 38, 1011–1019.

    Article  CAS  Google Scholar 

  207. Mohanty, A., Kathuria, H., Ferjani, A., Sakamoto, A., Mohanty, P., Murata, N., et al. (2002). Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. TAG. Theoretical and Applied Genetics, 106, 51–57.

    CAS  Google Scholar 

  208. Prasad, K. V. S. K., Sharmila, P., Kumar, P. A., & Saradhi, P. P. (2000). Transformation of Brassica juncea (L.) Czern with bacterial cod.A gene enhances its tolerance to salt stress. Molecular Breeding, 6, 489–499.

    Article  CAS  Google Scholar 

  209. Guo, B. H., Zhang, Y. M., Li, H. J., Du, L. Q., Li, Y. X., Zhang, J. S., et al. (2000). Transformation of wheat with a gene encoding for the betaine aldehyde dehydrogenase (BADH). Acta Botanica Sinica, 42, 279–283.

    Google Scholar 

  210. Alet, A. I., Sanchez, D. H., Cuevas, J. C., Valle, S. D., Altabella, T., Tiburcio, A. F., et al. (2011). Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signaling and Behavior, 6, 278–286.

    Article  CAS  Google Scholar 

  211. Wang, Y., Wisniewski, M. E., Meilan, R., Webb, R., Fuchigami, L., & Boyer, C. (2005). Overexpression of cytosolic ascorbate peroxidase in tomato (Lycopersicon esculentum) confers tolerance to chilling and salt stress. Journal of the American Society for Horticultural Science, 130, 167–173.

    CAS  Google Scholar 

  212. Qi, Y. C., Liu, W. Q., Qiu, L. Y., Zhang, S. M., Ma, L., & Zhang, H. (2010). Overexpression of glutathione S-transferase gene increases salt tolerance of Arabidopsis. The Russian Journal of Plant Physiology, 57, 233–240.

    Article  CAS  Google Scholar 

  213. Wang, F. Z., Wang, Q. B., Kwon, S. Y., Kwak, S. S., & Su, W. A. (2005). Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 162, 465–472.

    Article  CAS  Google Scholar 

  214. Chatzidimitriadou, K., Nianiou-Obeidat, I., Madesis, P., Perl-Treves, R., & Tsaftaris, A. (2009). Expression of SOD transgene in pepper confer stress tolerance and improve shoot regeneration. Electronic Journal of Biotechnology, 12, 4.

    Google Scholar 

  215. Ushimaru, T., Nakagawa, T., Fujioka, Y., Daicho, K., Naito, M., Yamauchi, Y., et al. (2006). Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology, 163, 1179–1184.

    Article  CAS  Google Scholar 

  216. Eltayeb, A. E., Kawano, N., Badawi, G. H., Kaminaka, H., Sanekata, T., Shibahara, T., et al. (2007). Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta, 225, 1255–1264.

    Article  CAS  Google Scholar 

  217. Kavitha, K., George, S., Venkataraman, G., & Parida, A. (2010). A salt-inducible chloroplastic monodehydroascorbate reductase from halophyte Avicennia marina confers salt stress tolerance on transgenic plants. Biochimie, 92, 1321–1329.

    Article  CAS  Google Scholar 

  218. Al-Taweel, K., Iwaki, T., Yabuta, Y., Shigeoka, S., Murata, N., & Wadano, A. (2007). A bacterial transgene for catalase protects translation of d1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiology, 145, 258–265.

    Article  CAS  Google Scholar 

  219. Moriwaki, T., Yamamoto, Y., Aida, T., Funahashi, T., Shishido, T., Asada, M., et al. (2008). Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5. Plant Biotechnology Reports, 2, 41–46.

    Article  Google Scholar 

  220. Capell, T., Bassie, L., & Christou, P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 9909–9914.

    Article  CAS  Google Scholar 

  221. Alcázar, R., Planas, J., Saxena, T., Zarza, X., Bortolotti, C., Cuevas, J. C., et al. (2010). Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous Arginine decarboxylase 2 gene. Plant Physiology and Biochemistry, 48, 547–552.

    Article  CAS  Google Scholar 

  222. Roy, M., & Wu, R. (2002). Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Science, 163, 987–992.

    Article  CAS  Google Scholar 

  223. Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., & Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant and Cell Physiology, 45, 712–722.

    Article  CAS  Google Scholar 

  224. Wen, X. P., Pang, X. M., Matsuda, N., Kita, M., Inoue, H., Hao, Y. J., et al. (2008). Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Research, 17, 251–263.

    Article  CAS  Google Scholar 

  225. Zhang, H. X., & Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnology, 19, 765–768.

    Article  CAS  Google Scholar 

  226. Zhang, H. X., Hodson, J. N., Williams, J. P., & Blumwald, E. (2001). Engineering salt tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proceedings of the National Academy of Sciences of the United States of America, 98, 12832–12836.

    Article  CAS  Google Scholar 

  227. Zhao, J. S., Zhi, D. Y., & Xue, Z. Y. (2007). Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. Journal of Plant Physiology, 164, 1377–1383.

    Article  CAS  Google Scholar 

  228. Chen, L. H., Zhang, B., & Xu, Z. Q. (2008). Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Research, 17, 121–132.

    Article  CAS  Google Scholar 

  229. Liu, H., Wang, Q., Yu, M., Zhang, Y., Wu, Y., & Zhang, H. (2008). Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively overexpressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage root. Plant, Cell and Environment, 31, 1325–1334.

    Article  CAS  Google Scholar 

  230. Tian, N., Wang, J., & Xu, Z. Q. (2010). Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). South African Journal of Botany, 77, 160–169.

    Article  CAS  Google Scholar 

  231. **ao-Yan, Y., Ai-Fang, Y., Ke-Wei, Z., & Ju-Ren, Z. (2004). Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1; Gene. Acta Botanica Sinica, 46, 854–861.

    Google Scholar 

  232. Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., et al. (2002). Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters, 532, 279–282.

    Article  CAS  Google Scholar 

  233. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., et al. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology, 45, 146–159.

    Article  CAS  Google Scholar 

  234. Wu, C. A., Yang, G. D., Meng, Q. W., & Zheng, C. C. (2004). The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant and Cell Physiology, 45, 600–607.

    Article  CAS  Google Scholar 

  235. Lu, S. Y., **g, Y. X., Shen, S. H., Zhao, H. Y., Ma, L. Q., Zhou, X. J., et al. (2005). Antiporter Gene from Hordeum brevisubulatum (Trin.) link and Its overexpression in transgenic tobaccos. Journal of Integrative Plant Biology, 47, 343–349.

    Article  CAS  Google Scholar 

  236. Rajagopal, D., Agarwal, P., Tyagi, W., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2007). Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Molecular Breeding, 19, 137–151.

    Article  CAS  Google Scholar 

  237. Verma, D., Singla-Pareek, S. L., Rajagopal, D., Reddy, M. K., & Sopory, S. K. (2007). Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. Journal of Biosciences, 32, 621–626.

    Article  CAS  Google Scholar 

  238. Qiao, W. H., Zhao, X. Y., & Li, W. (2007). Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Reports, 26, 1663–1672.

    Article  CAS  Google Scholar 

  239. Zhang, G. H., Su, Q., An, L. J., & Wu, S. (2008). Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry, 46, 117–126.

    Article  CAS  Google Scholar 

  240. Li, W., Wang, D., **, T., Chang, Q., Yin, D., Xu, S., et al. (2010). The vacuolar Na+/H+ antiporter gene SsNHX1from the halophyte Salsola soda confers salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 29, 278–290.

    Google Scholar 

  241. Li, Y., Zang, Y., Feng, F., Liang, D., Cheng, L., & Shi, S. M. (2010). Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M.26 and its influence on salt tolerance. Plant Cell, Tissue and Organ Culture, 102, 337–345.

    Article  CAS  Google Scholar 

  242. Wu, C., Gao, X., Kong, X., Zhao, Y., & Zhang, H. (2009). Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Molecular Biology Reporter, 27, 1–12.

    Article  CAS  Google Scholar 

  243. Guan, B., Hu, Y., Zeng, Y., Wang, Y., & Zhang, F. (2011). Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Molecular Biology Reports, 38, 1889–1899.

    Article  CAS  Google Scholar 

  244. Asif, M. A., Zafar, Y., Iqbal, J., Iqbal, M. M., Rashid, U., Ali, G. M., et al. (2011). Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Molecular Biotechnology. doi:10.1007/s12033-011-9399-1.

  245. Wei, Q., Guo, Y. J., Cao, H. M., & Kuai, B. K. (2011). Cloning and characterization of an AtNHX2-like Na+/H+ antiporter gene from Ammopiptanthus mongolicus (Leguminosae) and its ectopic expression enhanced drought and salt tolerance in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 105, 309–316.

    Article  CAS  Google Scholar 

  246. Bayat, F., Shiran, B., Belyaev, D. V., Yur’eva, N. O., Sobol’kova, G. I., Alizadeh, H., et al. (2010). Potato plants bearing a vacuolar Na+/H+ antiporter HvNHX2 from barley are characterized by improved salt tolerance. Russian Journal of Plant Physiology, 57, 696–706.

    Article  CAS  Google Scholar 

  247. Zhao, F. Y., Guo, S. L., Zhang, H., & Zhao, Y. X. (2006). Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Science, 170, 216–224.

    Article  CAS  Google Scholar 

  248. Martínez-Atienza, J., Jiang, X. Y., Garciadeblas, B., Mendoza, I., Zhu, J. K., Pardo, J. M., et al. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiology, 143, 1001–1012.

    Article  CAS  Google Scholar 

  249. Wu, Y., Ding, N., Zhao, X., Zhao, M., Chang, Z., Liu, J., et al. (2007). Molecular characterization of PeSOS1, the putative Na+/H+ antiporter of Populus euphratica. Plant Molecular Biology, 65, 1–11.

    Article  CAS  Google Scholar 

  250. Olías, R., Eljakaoui, Z., Li, J., Morales, P. A. D., Marín-manzano, M. C., Pardo, J. M., et al. (2009). The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant, Cell and Environment, 32, 904–916.

    Article  Google Scholar 

  251. D’yakova, E. V., Rakitin, A. L., Kamionskaya, A. M., Baikov, A. A., Lahti, R., Ravin, N. V., et al. (2006). A study of the effect of expression of the gene encoding the membrane H+-pyrophosphatase of Rhodospirillum rubrum on salt resistance of transgenic tobacco plants. Doklady Biological Sciences, 409, 346–348.

    Article  Google Scholar 

  252. Gao, F., Gao, Q., Duan, X. G., Yue, G. D., Yang, A. F., & Zhang, J. R. (2006). Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. Journal of Experimental Botany, 57, 3259–3270.

    Article  CAS  Google Scholar 

  253. Li, B., Wei, A. Y., Song, C. X., Li, N., & Zhang, J. R. (2008). Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal, 6, 146–159.

    Article  CAS  Google Scholar 

  254. Lv, S. L., Zhang, K. W., Gao, Q., Lian, L. J., Song, Y. J., & Zhang, J. R. (2008). Overexpression of an H + -PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant and Cell Physiology, 49, 1150–1164.

    Article  CAS  Google Scholar 

  255. Bao, A. K., Wang, S. M., Wu, G. Q., **, J. J., Zhang, J. L., & Wang, C. M. (2009). Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176, 232–240.

    Article  CAS  Google Scholar 

  256. Zhao, F. Y., Zhang, X. J., Li, P. H., Zhao, Y. X., & Zhang, H. (2006). Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol. Breed., 17, 341–353.

    Article  CAS  Google Scholar 

  257. Guo, S., Yin, H., Zhang, X., Zhao, F., Li, P., Chen, S., et al. (2006). Molecular cloning and characterization of a vacuolar H+-pyrophopsatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Molecular Biology, 60, 41–50.

    Article  CAS  Google Scholar 

  258. Pasapula, V., Shen, G., Kuppu, S., Paez-Valencia, J., Mendoza, M., Hou, P., et al. (2010). Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal, 9, 88–99.

    Article  CAS  Google Scholar 

  259. Li, Z., Baldwin, C. M., Hu, Q., Liu, H., & Luo, H. (2010). Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic cree** bentgrass (Agrostis stolonifera L.). Plant, Cell and Environment, 33, 272–289.

    Article  CAS  Google Scholar 

  260. Lv, S. L., Lian, L. J., Tao, P. L., Li, Z. X., Zhang, K. W., & Zhang, J. R. (2009). Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta, 229, 899–910.

    Article  CAS  Google Scholar 

  261. Jacobs, A., Ford, K., Kretschmer, J., & Tester, M. (2011). Rice plants expressing the moss sodium pum** ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotechnology Journal, 9, 838–847.

    Google Scholar 

  262. Gao, C., Wang, Y., Jiang, B., Liu, G., Yu, L., Wei, Z., et al. (2011). A novel vacuolar membrane H+-ATPase c subunit gene (ThVHAc1) from Tamarix hispida confers tolerance to several abiotic stresses in Saccharomyces cerevisiae. Molecular Biology Reports, 38, 957–963.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support received from CSIR and DST New Delhi is gratefully acknowledged. Kapil Gupta acknowledges the award of CSIR-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agarwal, P.K., Shukla, P.S., Gupta, K. et al. Bioengineering for Salinity Tolerance in Plants: State of the Art. Mol Biotechnol 54, 102–123 (2013). https://doi.org/10.1007/s12033-012-9538-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-012-9538-3

Keywords

Navigation