Log in

Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes

  • Original paper
  • Published:
Photosynthetica

Abstract

In order to understand the physiological traits important in conferring salt tolerance in three barley genotypes, this study was performed under field conditions with three water salinity levels (2, 10, and 18 dS m–1). High salinity decreased net photosynthetic rate, transpiration rate, and stomatal conductance, K+ concentration, K+:Na+ ratio, and grain yield, but increased electrolyte leakage and Na+ content. Under 10 and 18 dS m–1 salinity, Khatam (salt-tolerant) had the maximum stomatal conductance, K+, K+:Na+ ratio, and the grain yield, and a minimum Na+ content and electrolyte leakage, whereas Morocco (salt-sensitive) had the lowest net photosynthetic rate, stomatal conductance, K+ content, K+:Na+ ratio, and grain yield, and the highest Na+ content and electrolyte leakage. This study showed that tolerant genotypes of barley may avoid Na+ accumulation in aboveground parts, facilitating a higher photosynthetic rate and higher grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

E :

transpiration rate

EL:

electrolyte leakage

GMP:

geometric mean productivity

g s :

stomatal conductance

P N :

net photosynthetic rate

RWC:

relative water content

SPAD:

chlorophyll content.

References

  • Akhtar J., Saqib Z.A., Sarfraz M. et al.: Evaluating salt tolerant cotton genotypes at different levels of NaCl stress in solution and soil culture. — Pak. J. Bot. 42: 2857–2866, 2010.

    Google Scholar 

  • Ahmadi A., Emam Y., Pessarakli M.: Response of various cultivars of wheat and maize to salinity stress. — J. Food Agr. Environ. 7: 123–128, 2009.

    CAS  Google Scholar 

  • Ahmadizadeh M., Valizadeh M., Zaefizadeh M. et al.: Antioxidative protection and electrolyte leakage in Durum wheat under drought stress condition. — J. Appl Sci. Res. 7: 236–246, 2011.

    CAS  Google Scholar 

  • Akbari Ghogdi E.A., Izadi-Darbandi A., Borzouei A.: Effects of salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. — Indian J. Sci. Tech. 5: 1901–1906, 2012.

    Google Scholar 

  • Ashraf M.: Some important physiological selection criteria for salt tolerance in plants. — Flora 199: 361–376, 2004.

    Article  Google Scholar 

  • Ashraf M., Ashraf A.: Salt-induced variation in some potential physiochemical attributes of two genetically diverse spring wheat (Triticum aestivum L.) cultivars: photosynthesis and photosystem II efficiency. — Pak. J. Bot. 44: 53–64, 2012.

    CAS  Google Scholar 

  • Ashrafi E., Razmjoo J., Zahedi M. et al.: Selecting alfalfa cultivars for salt tolerance based on some physiochemical traits. — Agron. J. 106: 1758–1764, 2014.

    Article  CAS  Google Scholar 

  • Atlassi Pak V., Nabipour M., Meskarbash M.: Effect of salt stress on chlorophyll content, fluorescence, Na and K ions content in rape plants (Brassica napus L.). — Asian J. Agr. Res. 3: 28–37, 2009.

    Google Scholar 

  • Azizian A., Sepaskhah A.R.: Maize response to water, salinity and nitrogen levels: physiological growth parameters and gas exchange. — Int. J. Plant Prod. 8: 131–162, 2014.

    Google Scholar 

  • Azizov I.V., Khanisheva M.A.: Pigment content and activity of chloroplasts of wheat genotypes grown under saline environment. — P. Azerbaijan Nat. Acad. Sci. Bio. Sci. 65: 96–98, 2010.

    Google Scholar 

  • Azizpour K., Shakiba M.R., Khosh Kholg Sima N.A. et al.: Physiological response of spring durum wheat genotypes to salinity. — J. Plant Nutr. 33: 859–873, 2010.

    Article  CAS  Google Scholar 

  • Bajji M., Kinet J.M., Lutts S.: The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. — Plant. Growth Regul. 36: 61–70, 2001.

    Article  Google Scholar 

  • Bauder T.A., Waskom R.M., Sutherland P.L. et al.: Irrigation Water Quality Criteria. Colorado State University Extension, Fort Collins 2011.

    Google Scholar 

  • Bonales-Alatorre E., Shabala S., Chen Z.H. et al.: Reduced tonoplast fast activating and slow activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. — Plant Physiol. 162: 940–952, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S., Grando S., Maatougui M. et al.: Plant breeding and climate changes. — J. Agric. Sci. 148: 627–637, 2010.

    Article  Google Scholar 

  • Chen Z.H., Newman I., Zhou M.X. et al.: Screening plants for salt tolerance by measuring K + flux: a case study for barley. — Plant Cell Environ. 28: 1230–1246, 2005.

    Article  CAS  Google Scholar 

  • Chen Z., Zhou M.X., Newman I. et al.: Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance. — Funct. Plant Biol. 34: 150–162, 2007.

    Article  CAS  Google Scholar 

  • Chen L., Ren J., Shi H. et al.: Physiological and molecular responses to salt stress in wild emmer and cultivated wheat. — Plant Mol. Biol. Rep. 31: 1212–1219, 2013.

    Article  CAS  Google Scholar 

  • Cuin T.A., Parsons D., Shabala S.: Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. — Funct. Plant Biol. 37: 656–664, 2010.

    Article  CAS  Google Scholar 

  • Ebrahimian E., Bybordi A.: Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower. — J. Food Agric. Environ. 9: 422–427, 2011.

    CAS  Google Scholar 

  • El-Hendawy S.E., Hu Y., Schmidhalter U.: Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. — J. Integr. Plant Biol. 49: 1352–1360, 2007.

    Article  Google Scholar 

  • El-Tayeb M.A.: Differential response of two Vicia faba cultivars to drought: growth, pigments, lipid peroxidation, organic solutes, catalase and peroxidase activity. — Acta Agron. Hung. 54: 25–37, 2006.

    Article  Google Scholar 

  • Esechie H., Rodriguez V.: Does salinity inhibit alfalfa leaf growth by reducing tissue concentration of essential mineral nutrients? — J. Agron. Crop Sci. 182: 273–278, 1999.

    Article  CAS  Google Scholar 

  • Farshadfar E., Mohammadi R., Aghaee M. et al. Identification of QTLs involved in physiological and agronomic indicator of drought tolerance in rye using a multiple selection index. — Acta Agron. Hung. 51: 419–428, 2003.

    Article  Google Scholar 

  • Fernandez, G.C.J.: Effective selection criteria for assessing stress tolerance. — In: Kuo C.G. (ed.): Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress. Pp. 257–270. AVRDC Publication, Tainan 1992.

  • Geravandi M., Farshadfar E., Kahrizi D.: Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes. — Russ. J. Plant Physl+ 58: 69–75, 2011.

    Article  CAS  Google Scholar 

  • Gill S.S., Tuteja N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Bioch. 48: 909–930, 2010.

    Article  CAS  Google Scholar 

  • Giunta F., Motzo R., Deidda M.: SPAD readings and associated leaf traits in durum wheat, barley and triticale cultivars. — Euphytica 125: 197–205, 2002.

    Article  CAS  Google Scholar 

  • Gomes M.A.C., Suzuki M.S., Cunha M.D. et al.: Effect of salt stress on nutrient concentration, photosynthetic pigments, proline and foliar morphology of Salvinia auriculata Aubl. — Acta Limnol. Bras. 23: 164–176, 2011.

    Article  Google Scholar 

  • James R.A., von Caemmerer S., Condon A.G.T. et al.: Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. — Funct. Plant Biol. 35: 111–123, 2008.

    Article  CAS  Google Scholar 

  • Kafi M., Bagheri A., Nabati J. et al.: Effect of salinity on some physiological variables of 11 chickpea genotypes under hydroponic conditions. — J. Sci. Technol. Greenhouse Cult. 1: 55–70, 2011.

    Google Scholar 

  • Kaya C., Kirnak H., Higgs D. et al.: Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus on tomato cultivars grown at high (NaCl) salinity. — J. Plant Nutr. 24: 357–367, 2001.

    Article  CAS  Google Scholar 

  • Kanwal H., Ashraf M., Shahbaz M.: Assessment of salt tolerance of some newly developed and candidate wheat (Triticum aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. — Pak. J. Bot. 43: 2693–2699, 2011.

    CAS  Google Scholar 

  • Khan M.A., Shirazi M.U., Khan M.A. et al.: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). — Pak. J. Bot. 41: 633–638, 2009.

    Google Scholar 

  • Khorshidi M.B., Yarnia M., Hassanpanah D.: Salinity effect on nutrients accumulation in alfalfa shoots in hydroponic condition. — J. Food Agric. Environ. 7: 787–790, 2009.

    CAS  Google Scholar 

  • Kiani-Pouya A., Rasouli F.: The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition. — Photosynthetica 52: 288–300, 2014.

    Article  CAS  Google Scholar 

  • Kumar V., Shriram V., Nikam T. et al.: Sodium chloride induced changes in mineral nutrients and proline accumulation in indica rice cultivars differing in salt tolerance. — J. Plant Nutr. 31: 1999–2017, 2008.

    Article  CAS  Google Scholar 

  • Ligaba A., Katsuhara M.: Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensivity. — J. Plant Res. 123: 105–118, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Maggio A., Hasegawa P.M, Bressan R.A. et al.: Unraveling the functional relationship between root anatomy and stress tolerance. — Aust. J. Plant Physiol. 28: 999–1004, 2001.

    Google Scholar 

  • Mohammadkhani N., Heidari R.: Effects of drought stress on soluble proteins in two maize varieties. — Turk. J. Biol. 32: 23–30, 2008.

    CAS  Google Scholar 

  • Mahmood K.: Salinity tolerance in barley (Hordeum vulgare L.): Effects of varying NaCl, K+/Na+ and NaHCO3 levels on cultivars different in tolerance. — Pak. J. Bot. 43: 1651–1654, 2011.

    CAS  Google Scholar 

  • Morshedi A., Farahbakhash H.: The role of potassium and zinc in reducing salinity and alkalinity stress conditions in two wheat genotypes. — Arch. Agron. Soil Sci. 58: 371–384, 2012.

    Article  CAS  Google Scholar 

  • Munns R.: Genes and salt tolerance, bringing them together. — New Phytol. 167: 645–663, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Munns R., James R.A.: Screening methods for salinity tolerance: a case study with tetraploid wheat. — Plant Soil 253: 201–218, 2003.

    Article  CAS  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Netondo G.W., Onyango J.C., Beck E.: Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. — Crop Sci. 44: 806–811, 2004.

    Article  Google Scholar 

  • Niazi M.L.K., Mahmood K., Mujtaba S.M. et al.: Salinity tolerance in different cultivars of barley (Hordeum vulgare L.). — Biol. Plantarum 34: 465–469, 1992.

    Article  CAS  Google Scholar 

  • Omar M.N.A., Osman M.E.H., Kasim W.A. et al.: Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. — In: Ashraf M., Ozturk M., Athar H.R. (ed.): Salinity and Water Stress. Chapter 15. Pp. 133–147. Springer Science + Business Media B.V, Giza 2009.

    Chapter  Google Scholar 

  • Parida A.K., Das A.B., Mittra B.: Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. — Trees-Struct. Funct. 18: 167–174, 2004.

    Article  CAS  Google Scholar 

  • Pask A.J.D., Pietragalla J., Mullan D.M. et al.: Physiological Breeding II: a Field Guide to Wheat Phenoty**. CIMMYT, 2011.

    Google Scholar 

  • Peng Y.L., Gao Z.W., Gao Y. et al.: Eco-physiological characteristics of alfalfa seedlings in response to various mixed saltalkaline stresses. — J. Integr. Plant Biol. 50: 29–39, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Perveen S., Shahbaz M., Ashraf M.: Influence of foliar-applied triacontanol on growth, gas exchange characteristics, and chlorophyll fluorescence at different growth stages in wheat under saline conditions. — Photosynthetica 51: 541–551, 2013.

    Article  CAS  Google Scholar 

  • Piao S., Ciais P., Friedlingstein P. et al.: Net carbon dioxide losses of northern ecosystems in response to autumn warming. — Nature 451: 49–52, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Pirasteh-Anosheh H., Emam Y.: Manipulation of morphophysiological traits in bread and durum wheat by using PGRs at different water regimes. — J. Crop Prod. Process. 5: 29–45, 2012.

    Google Scholar 

  • Pirasteh-Anosheh H., Ranjbar G., Pakniyat H. et al.: Physiological mechanisms of salt stress tolerance in plants: An overview. — In: Mahgoub Azooz M., Ahmad P. (ed.): Plant-Environment Interaction: Responses and Approaches to Mitigate Stress. Chapter 8. Pp. 141–160. John Wiley & Sons, Ltd, Jammu and Kashmir 2016.

  • Shafaqat A., Cai S., Zeng F. et al.: Effect of salinity and hexavalent chromium stress on uptake and accumulation of mineral elements in barley genotypes different in salt. — J. Plant Nutr. 35: 827–839, 2012.

    Article  Google Scholar 

  • Shahbaz M., Ashraf M., Akram N.A. et al.: Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). — Acta Physiol. Plant. 33: 1113–1122, 2011.

    Article  CAS  Google Scholar 

  • Shahbaz M., Zia B.: Does exogenous application of glycinebetaine through rooting medium alter rice (Oryza sativa L.) mineral nutrient status under saline conditions? — J. Appl. Bot. Food Qual. 84: 54–60, 2011.

    CAS  Google Scholar 

  • Sikder S., Foulkes J., West H. et al.: Evaluation of photosynthetic potential of wheat genotypes under drought condition. — Photosyntheica 53: 47–54, 2015.

    Article  CAS  Google Scholar 

  • Stevens J., Senaratna T., Sivasithamparam K.: Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilization. — Plant Growth Regul. 49: 77–83, 2006.

    CAS  Google Scholar 

  • Tabatabaei S., Ehsanzadeh P.: Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. — Photosyntheica 54: 340–350, 2016.

    Article  CAS  Google Scholar 

  • Talat A., Nawaz K., Hussian K. et al.: Foliar application of proline for salt tolerance of two wheat cultivars. — World Appl. Sci. J. 22: 547–554, 2013.

    CAS  Google Scholar 

  • Tavakoli F., Vazan S.A., Moradi F. et al.: Differential response of salt-tolerant and susceptible barley genotypes to salinity stress. — J. Crop Improve. 24: 244–260, 2010.

    Article  CAS  Google Scholar 

  • Torabi M.: Physiological and Biochemical Responses of Iranian Alfalfa (Medicago sativa L.) Ecotypes to Salt Stress. — PhD. Thesis, Putra University, Putra 2010.

    Google Scholar 

  • Vysotskaya L., Hedley P.E., Sharipova G. et al.: Effect of salinity on water relations of wild barley plants differing in salt tolerance. — AoB Plant 2010: plq006, 2010.

    Article  Google Scholar 

  • Widodo, Patterson J.H., Newbigin E. et al.: Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. — J. Exp. Bot. 60: 4089–4103, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzel K., Matros A., Strickert M. et al.: Salinity stress in roots of contrasting barley genotypes reveals time-distinct and genotype-specific patterns for defined proteins. — Mol. Plant. 7: 336–355, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Wu D., Cai S., Chen M. et al.: Tissue metabolic responses to salt stress in wild and cultivated barley. — Plos One 8: e55431, 2013.

    Article  Google Scholar 

  • Yardanov I., Velikova V., Tsonev T.: Plant responses to drought and stress tolerance. — Bulg. J. Plant Physiol. SI: 187–206, 2003.

    Google Scholar 

  • Yeo A.R., Flowers T.J.: Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. — Aust. J. Plant Physiol. 13: 161–173, 1986.

    Article  Google Scholar 

  • Zheng Y.H., Xu X.B., Wang M.Y. et al.: Responses of salt tolerant and intolerant wheat genotypes to sodium chloride: Photosynthesis, antioxidants activities, and yield. — Photosynthetica. 47: 87–94, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Seyed Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahlooji, M., Seyed Sharifi, R., Razmjoo, J. et al. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56, 549–556 (2018). https://doi.org/10.1007/s11099-017-0699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0699-y

Additional key words

Navigation