Log in

Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensitivity

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Although barley (Hordeum vulgare L.) is a salt-tolerant crop, the underlying physiological and molecular mechanisms of salt tolerance remain to be elucidated. Therefore, we investigated the response of salt-tolerant (K305) and salt-sensitive (I743) cultivars to salt stress at both physiological and molecular levels. Salt treatment increased xylem sap osmolarity, which was attributed primarily to a rise in Na+ and Cl concentration; enhanced accumulation of the ions in shoots; and reduced plant growth more severely in I743 than K305. The concentration of K+ in roots and shoots decreased during 8 h of salt treatment in both cultivars but with no marked difference between cultivars. Hence, the severe growth reduction in I743 is attributed to the elevated levels of (mainly) Na+ in shoots. Analysis of gene expression using quantitative RT-PCR showed that transcripts of K+-transporters (HvHAK1 and HvAKT1), vacuolar H+-ATPase and inorganic pyrophosphatase (HvHVA/68 and HvHVP1) were more abundant in shoots of K305 than in shoots of I743. Expression of HvHAK1 and Na+/H+ antiporters (HvNHX1, HvNHX3 and HvNHX4) was higher in roots of K305 than in I743 with prolonged exposure to salt. Taken together, these results suggest that the better performance of K305 compared to I743 during salt stress may be related to its greater ability to sequester Na+ into sub-cellular compartments and/or maintain K+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Armstrong F, Leung J, Grabov A, Brearley J, Giraudat J, Blatt MR (1995) Sensitivity to abscisic acid of guard cell K+ channels is suppressed by abi1–1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci USA 92:9520–9524

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros E, Blumwald E, Donaire JP, Belver A (1997) Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiol Plant 99:328–334

    Article  CAS  Google Scholar 

  • Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784–795

    Article  PubMed  Google Scholar 

  • Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of slow-vacuolar ion channel. Plant J 11:1227–1235

    Article  CAS  Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254

    Article  CAS  Google Scholar 

  • Blumwald E, Poole RT (1985) Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol 78:163–167

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Poole RT (1987) Salt tolerance in suspension cultures of sugar beet. Plant Physiol 83:884–887

    Article  CAS  PubMed  Google Scholar 

  • Chavan P, Karadge B (1980) Influence of sodium chloride and sodium sulphate salinization on photosynthesis carbon assimilation in pea nuts. Plant Soil 56:201–207

    Article  CAS  Google Scholar 

  • Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58:4245–4255

    Article  CAS  PubMed  Google Scholar 

  • Chomezynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat X Lophopyrum elongatum (Host) A. Love amphiploid. Plant Physiol 108:1715–1724

    CAS  PubMed  Google Scholar 

  • Davenport RJ, Muñoz-Mayo A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Roots to abiotic stress cell identity mediates the response. Science 320:942–944

    Article  CAS  PubMed  Google Scholar 

  • Emmerlich V, Linka N, Reinhold T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126

    Article  CAS  PubMed  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis: structure, function, and responses to the environment. J Plant Growth Regul 21:335–351

    Article  CAS  Google Scholar 

  • Fan TWM, Higashi RM, Norlyn J, Epstein E (1989) In vivo 23Na and 31P NMR measurement of a tonoplast Na+/H+ exchange process and its characteristics in two barley cultivars. Proc Natl Acad Sci USA 86:9856–9860

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (1988) Chloride as a nutrient and as an osmoticum. In: Tinker B, Läuchli A (eds) Advances in plant nutrition, vol 3. Praeger, New York, pp 55–78

    Google Scholar 

  • Fu HH, Luan S (1998) AtKUP1: a dual affinity K-transporter from Arabidopsis. Plant Cell 10:63–73

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Yazaki Y, Ishikawa T, Koike S, Tanaka Y (1998) Na+/H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol 39:196–201

    CAS  Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophy Acta 1446:149–155

    CAS  Google Scholar 

  • Garbarino J, DuPont FM (1989) Rapid induction of Na+/H+ exchange activity in barley root tonoplast. Plant Physiol 89:1–4

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. J Exp Bot 56:2365–2378

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Dietz KJ (2001) Salt-induced expression of the vacuolar H+-ATPase in the common ice plant is developmentally controlled and tissue specific. Plant Physiol 125:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Horie R, Chan WY, Leung HY, Schroeder JI (2006) Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. Plant Cell Physiol 47:622–633

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:3003–3014

    Article  CAS  PubMed  Google Scholar 

  • Kader MA, Seidel T, Golldack D, Lindberg S (2006) Expressions of OsHKT1, OsHKT2 and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57:4257–4268

    Article  CAS  PubMed  Google Scholar 

  • Katsuhara M, Yamada M, Kasamo K (2001) Isolation of barley salT gene: its relation to salt tolerance and to hormonal regulation by abscisic acid and jasmonic acid. Soil Sci Plant Nutr 47:187–193

    CAS  Google Scholar 

  • Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Kluge C, Lamkemeyer P, Tavakoli N, Golldack D, Kandlbinder A, Dietz KJ (2003) cDNA cloning of 12 subunits of the V-type ATPase from Mesembryanthemum crystallinum and their expression under stress. Mol Membr Biol 20:171–183

    Article  CAS  PubMed  Google Scholar 

  • Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    Article  PubMed  Google Scholar 

  • Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK (2009) The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 230:119–134

    Article  CAS  PubMed  Google Scholar 

  • Latorre R, Olcese R, Basso C, Gonzalez C, Munoz F, Cosmelli D, Alvarez O (2003) Molecular coupling between voltage sensor and pore opening in the Arabidopsis inward rectifier K+ channel KAT1. J Gen Physiol 122:459–469

    Article  CAS  PubMed  Google Scholar 

  • Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149

    Article  CAS  PubMed  Google Scholar 

  • Leonova TG, Goncharova EA, Khodorenko AV, Babakov AV (2005) Characteristics of salt-tolerant and salt-susceptible cultivars of barley. Russ J Plant Physiol 52:774–778

    Article  CAS  Google Scholar 

  • Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216

    CAS  PubMed  Google Scholar 

  • Maathuis FJM (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Mano Y (1996) Studies on breeding and evaluation of germplasm for salt tolerance in barley (in Japanese with English summary). Special report of the Barley Germplasm Center Okayama University 2:1–89

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr 24:599–612

    Article  CAS  Google Scholar 

  • Munns R (2001) Avenues for increasing salt tolerance of crops. In: Horst J et al (eds) Plant nutrition: food security and sustainability of agro-ecosystems. Kluwer, Dordrecht, pp 370–371

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Guo J, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in increasing salt tolerance in monocotyledonous plants 1041 salt-treated barley. Aust J Plant Physiol 27:949–957

    Google Scholar 

  • Munns R, James AJ, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Peterson CA (1988) Exodermal Casparian bands: their significance for ion uptake by roots. Physiol Plant 72:204–208

    Article  CAS  Google Scholar 

  • Pitman MG, Lauchli A, Stelzer R (1981) Ion distribution in roots of barley seedlings measured by electron probe X-ray microanalysis. Plant Physiol 68:673–679

    Article  CAS  PubMed  Google Scholar 

  • Quintero J, Blatt MR (1997) A new family of K-transporters from Arabidopsis that are conserved across phyla. FEBS Lett 415:206–211

    Article  CAS  PubMed  Google Scholar 

  • Robards AW, Jackson SM, Clarkson DT, Sanderson J (1973) The structure of barley roots in relation to the transport of ions into the stele. Protoplasma 77:291–311

    Article  Google Scholar 

  • Royo A, Aragüés R (1999) Salinity-yield response functions of barley genotypes assessed with a triple line source sprinkler system. Plant Soil 209:9–20

    Article  CAS  Google Scholar 

  • Royo A, Aragüés R, Playán E, Ortiz R (2000) Salinity-grain yield response functions of barley cultivars assessed with a drip-injection irrigation system. Soil Sci Soc Am J 64:359–365

    CAS  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663

    Article  CAS  PubMed  Google Scholar 

  • Rubio F, Gassmann W, Schroeder JI (1996) Technical comment. Science 273:978–979

    Article  CAS  PubMed  Google Scholar 

  • Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155

    Article  CAS  PubMed  Google Scholar 

  • Salimath BP, Marme D (1983) Protein phosphorylation and its regulation by calcium and calmodulin in membrane fractions from zucchini hypocotyls. Planta 158:560–568

    Article  CAS  Google Scholar 

  • Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A (1997) The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 9:2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  CAS  PubMed  Google Scholar 

  • Staal M, Maathuis FJM, Elzenga TM, Overbeek HM, Prins HBA (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82:179–184

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6(2):143–156

    Article  CAS  PubMed  Google Scholar 

  • Westfall PH, Tobia RD, Rom D, Wolfinger RD, Hochberg Y (1996) Multiple comparisons of multiple tests using the SAS system. SAS Institute, Cary

    Google Scholar 

  • Wilson C, Shannon MC (1995) Salt induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci 107:147–157

    Article  CAS  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Apse MP, Shi H, Blumwald E (2003) Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA 100:12510–12515

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102:16107–16112

    Article  CAS  PubMed  Google Scholar 

  • Yang W-J, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycine betaine in Sorghum bicolor. Crop Sci 43:162–169

    Article  CAS  Google Scholar 

  • Yanxiang S, Dan W, Yanling B, Ningning W, Yong W (2006) Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: the reduced Na+ level is the basis of the increased salt tolerance. Chin Sci Bull 51:1306–1315

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Ding GH, Fang K, Zhao FG, Qin P (2006) New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul l49:147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Prof. Kazuyoshi Takeda for kind provision of barley seeds, Prof. Isao Aoyama for permitting the use of the atomic absorption and flame emission spectrophotometer and for ion chromatography, and Mr. Hisao Nishizaki for technical assistance. This research was supported mainly by a postdoctoral fellowship awarded by the Japan Society for the Promotion of Science (to A.L.) and partly by the Program for Promotion of Basic Research Activity for Innovative Bioscience (PROBRAIN, to M.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayalew Ligaba or Maki Katsuhara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Primers used for cloning and gene expression analysis by real-time RT-PCR (PPT 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligaba, A., Katsuhara, M. Insights into the salt tolerance mechanism in barley (Hordeum vulgare) from comparisons of cultivars that differ in salt sensitivity. J Plant Res 123, 105–118 (2010). https://doi.org/10.1007/s10265-009-0272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-009-0272-2

Keywords

Navigation