Log in

Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+xyFe2O4 synthesized by sol–gel auto-combustion technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Various polycrystalline compositions Ni0.38−xCu0.15+yZn0.47+xyFe2O4 [(x, y) = (0.00, 0.01)] are prepared through the sol–gel auto-combustion technique and sintered at 850, 950, 1050, and 1150 °C for 5 h in air. The single-phase cubic spinel structures of the compositions are confirmed by X-ray diffraction analysis. No secondary phases are observed in the X-ray diffraction patterns. The lattice constant is found to increase with do** of Zn2+ in place of Ni2+ and decrease with do** of Cu2+ in place of Ni2+. The bulk density of ferrites increases with sintering temperature up to 1050 °C, then decreases. The field emission scanning electron microscopy is used to demonstrate the surface morphology of the materials. The maximum grain size (1.97 µm) is found for the composition Ni0.38Cu0.16Zn0.46Fe2O4. The maximum bulk density (4.42 × 103 kg/m3), maximum initial permeability, and highest relative quality factor (≥ 6000) are observed for the composition Ni0.38Cu0.16Zn0.46Fe2O4 sintered at 1050 °C. The values of dielectric constants, impedance, and AC resistivity are found higher at lower frequencies but become almost constant at higher frequencies, which can be explained based on the hop** mechanism. The investigated ferrites exhibit comparatively higher permeability, lower eddy current loss, and higher resistivity, which make them suitable for wireless power transfer (WPT) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data are a part of the ongoing studies. Partial data can be shared upon request. All the raw materials were procured from Sigma Aldrich, Germany.

References

  1. M.V.S. Kumar, G.J. Shankar Murthy, E. Melagiriyappa, K.K. Nagaraja, H.S. Jayanna, M.P. Telenkov, Induced effects of Zn2+ on the transport and complex impedance property of Gadolinium substituted nickel-zinc nano ferrites. J. Magn. Magn. Mater. 478, 12–19 (2019). https://doi.org/10.1016/j.jmmm.2019.01.058

    Article  CAS  Google Scholar 

  2. A. Namai, M. Yoshikiyo, K. Yamada et al., Hard magnetic ferrite with a gigantic coercivity and high frequency millimeter wave rotation. Nat. Commun. 3(1035), 1–6 (2012). https://doi.org/10.1038/ncomms2038

    Article  Google Scholar 

  3. N.K. Gupta, Y. Ghaffari, S. Kim, Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Sci. Rep. 10, 4942 (2020). https://doi.org/10.1038/s41598-020-61930-2

    Article  CAS  Google Scholar 

  4. Y. Peng, C. **a, M. Cui, Z. Yao, X. Yi, Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation. Ultrason. Sonochem. (2021). https://doi.org/10.1016/j.ultsonch.2020.105369

    Article  Google Scholar 

  5. J. Zhao, X. Liu, X. Kan, Z. Chen, C. Liu, W. Wang, Q. Lv, J. Huang, M. Shazeda, Characterization of magnetic properties and microstructures for Co3+ ions-doped Ni-Cu-Zn ferrites. J. Mater. Sci.: Mater. Electron. 31, 9057–9064 (2020). https://doi.org/10.1007/s10854-020-03451-2

    Article  CAS  Google Scholar 

  6. M.H. Rashid, A.K.M. Akhter Hossain, Structural, morphological and electromagnetic properties of Sc3+ doped in Ni-Cu-Zn ferrites. Results Phys. 11, 888–895 (2018). https://doi.org/10.1016/j.rinp.2018.10.050

    Article  Google Scholar 

  7. S.T. Mahmud, A.K.M. Akhter Hossain, A.K.M.A. Hakim, M. Seki, T. Kawai, H. Tabata, Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite. J. Magn. Magn. Mater. 305, 269–274 (2006). https://doi.org/10.1016/j.jmmm.2006.01.012

    Article  CAS  Google Scholar 

  8. X. Wu, S. Yan, W. Liu, Z. Feng, Y. Chen, V.G. Harris, Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications. J. Magn. Magn. Mater. 40, 1093–1096 (2016). https://doi.org/10.1016/j.jmmm.2015.10.129

    Article  CAS  Google Scholar 

  9. S.R. Khan, S.K. Pavuluri, M.P.Y. Desmulliez, Accurate modeling of coil inductance for near-field wireless power transfer. IEEE Trans. Microw. Theory Techn. 66, 4158–4169 (2018). https://doi.org/10.1109/TMTT.2018.2854190

    Article  Google Scholar 

  10. M. Nabil, M. Bima, A. Alsharif, W. Johnson, S. Gunukula, M. Mahmoud, M. Abdallah, Priority-based and privacy-preserving electric vehicle dynamic charging system with divisible e-payment. Smart Cities Cyber. Priv. (2019). https://doi.org/10.1016/B978-0-12-815032-0.00012-3

    Article  Google Scholar 

  11. Y. Liu, G. Sreenivasulu, P. Zhou, Converse magneto-electric effects in a core–shell multiferroic nanofiber by electric field tuning of ferromagnetic resonance. Sci. Rep. 10, 20170 (2020). https://doi.org/10.1038/s41598-020-77041-x

    Article  CAS  Google Scholar 

  12. W. Liu, S. Yan, Y. Cheng, Q. Li, Z. Feng, X. Wang, R. Gong, Y. Nie, Monodomain design and permeability study of high-Q-factor NiCuZn ferrites for near-field communication application. J. Electron. Mater. 44, 4367–4372 (2015). https://doi.org/10.1007/s11664-015-3978-z

    Article  CAS  Google Scholar 

  13. A. Gholizadeh, E. Jafari, Effect of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nanoparticles: magnetic enhancement by a reducing atmosphere. J. Magn. Magn. Mater. 422, 328–336 (2017). https://doi.org/10.1016/j.jmmm.2016.09.029

    Article  CAS  Google Scholar 

  14. H. Su, X. Tang, H. Zhang, L. Jia, Z. Zhong, Influences of Fe deficiency on electromagnetic properties of low-temperature-fired NiCuZn ferrites. J. Magn. Magn. Mater. 322, 1779–1783 (2010). https://doi.org/10.1016/j.jmmm.2009.12.029

    Article  CAS  Google Scholar 

  15. H. Su, H. Zhang, X. Tang, Z. Zhong, F. Bai, Influences of high calcination temperature on densification and magnetic properties of low temperature-fired NiCuZn ferrites. IEEE Trans. Magn. 47, 4328–4331 (2011). https://doi.org/10.1016/j.jmmm.2009.12.029

    Article  CAS  Google Scholar 

  16. T. Nakamura, Snoek’s limit in high-frequency permeability of polycrystalline Ni-Zn, Mg-Zn, and Ni-Zn-Cu spinel ferrites. J. Appl. Phys. 88, 348 (2000). https://doi.org/10.1063/1.373666

    Article  CAS  Google Scholar 

  17. C.P. Wu, M.J. Tung, W.S. Ko, Y.P. Wang, S.Y. Tong, M.D. Yang, Effect of neodymium substitutions on electromagnetic properties in low temperature sintered NiCuZn ferrite. Phys. B. 476, 137–140 (2015). https://doi.org/10.1016/j.physb.2015.05.022

    Article  CAS  Google Scholar 

  18. M. Arifuzzaman, M.B. Hossen, M. Harun-Or-Rashid, M.L. Rahman, Structural and magnetic properties of nanocrystalline Ni0.7-xCuxCd0.3Fe2O4 prepared through sol-gel method. J. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2020.110810

    Article  Google Scholar 

  19. P. Pranisisco, A. Shafie, B.H. Guan, Effect of calcination temperature on microstructure and magnetic properties of Ni-Cu-Zn ferrite nanoparticles synthesized by sol-gel method. J. Am. Inst. Phys. 1621, 619 (2014). https://doi.org/10.1063/1.4898532

    Article  CAS  Google Scholar 

  20. S.K. Sharma, R. Kumar, S. Kumar, M. Knobel, C.T. Meneses, V.V.S. Kumar, V.R. Reddy, M. Singh, C.G. Lee, Role of interparticle interactions on the magnetic behavior of Mg-Mn ferrite nanoparticle. J. Phys: Condens. Matter. 20, 235214 (2008). https://doi.org/10.1088/0953-8984/20/23/235214

    Article  CAS  Google Scholar 

  21. P. Lathiya, M. Kreuzer, J. Wang, RF complex permeability spectra of Ni-Cu-Zn ferrites prepared under different applied hydraulic pressures and durations for wireless power transfer (WPT) applications. J. Magn. Magn. Mater. 499, 166273 (2019). https://doi.org/10.1016/j.jmmm.2019.166273

    Article  CAS  Google Scholar 

  22. A.K.M. Akhter Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1-xZnxFe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007). https://doi.org/10.1016/j.jmmm.2006.09.030

    Article  CAS  Google Scholar 

  23. J. **ang, X. Shen, F. Song, M. Liu, One-dimensional NiCuZn ferrite nanostructures: fabrication, structure, and magnetic properties. J. Solid State Chem. 183, 1239–1244 (2010). https://doi.org/10.1016/j.jssc.2010.03.041

    Article  CAS  Google Scholar 

  24. S.T. Assar, H.F. Abosheiasha, A.R. El Sayed, Effect of γ-rays irradiation on structural, magnetic, and electrical properties of Mg-Cu-Zn and Ni-Cu-Zn ferrites. J. Magn. Magn. Mater. 421, 355–367 (2017). https://doi.org/10.1016/j.jmmm.2016.08.028

    Article  CAS  Google Scholar 

  25. A.B. Nawale, N.S. Kanhe, K.R. Patil, S.V. Bhoraskar, V.L. Mathe, A.K. Das, Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 509, 4404–4413 (2011). https://doi.org/10.1016/j.jallcom.2011.01.057

    Article  CAS  Google Scholar 

  26. M. Houshiar, L. Jamilpanah, Effect of Cu dopant on the structural, magnetic and electrical properties of Ni-Zn ferrites. J. Mater. Res. Bull. 98, 213–218 (2018). https://doi.org/10.1016/j.materresbull.2017.10.024

    Article  CAS  Google Scholar 

  27. S.M. Hoque, M.A. Choudhury, M.F. Islam, Characterization of Ni–Cu mixed spinel ferrite. J. Magn. Magn. Mater. 251, 292–303 (2002). https://doi.org/10.1016/S0304-8853(02)00700-X

    Article  CAS  Google Scholar 

  28. W.C. Hsu, S.C. Chen, P.C. Kuo, C.T. Lie, W.S. Tsai, Preparation of NiCuZn ferrite nanoparticles from chemical co-precipitation method and the magnetic properties after sintering. J. Mater. Sci. Eng. 111, 142–149 (2004). https://doi.org/10.1016/j.mseb.2004.04.009

    Article  CAS  Google Scholar 

  29. S.M. Kabbur, U.R. Ghodake, D.Y. Nadargi, R.C. Kambale, S.S. Suryavanshi, Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites. J. Magn. Magn. Mater. 451, 665–675 (2017). https://doi.org/10.1016/j.jmmm.2017.12.006

    Article  CAS  Google Scholar 

  30. M. Harun-Or-Rashid, M.N. Islam, M. Arifuzzaman, A.K.M. Akhter Hossain, Effect of sintering temperature on the structural, morphological, electrical, and magnetic properties of Ni-Cu-Zn and Ni-Cu-Zn-Sc ferrites. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-05018-7

    Article  Google Scholar 

  31. Md.D. Rahman, K.K. Nahar, M.N.I. Khan, A.K.M. Akhter Hossain, Synthesis, structural, and electromagnetic properties of Mn0.5MgxZn0.5-xFe2O4 (x = 0.0, 0.1) polycrystalline ferrites. Phys. B 481, 156–164 (2016). https://doi.org/10.1016/j.physb.2015.11.008

    Article  CAS  Google Scholar 

  32. S. Nasrin, S.M. Khan, M.A. Matin, M.N.I. Khan, A.K.M. Akhter Hossain, M.D. Rahman, Synthesis and deciphering the effects of sintering temperature on structural, elastic, dielectric, electric and magnetic properties of magnetic Ni0.25Cu0.13Zn0.62Fe2O4 ceramics. J. Mater. Sci.: Mater Electron. 30, 10722–10741 (2019). https://doi.org/10.1007/s10854-019-01417-7

    Article  CAS  Google Scholar 

  33. A. Verma, T.C. Geol, R.G. Mendiratta, Frequency variation of initial permeability of NiZn ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 210, 274–278 (2000). https://doi.org/10.1016/S0304-8853(99)00451-5

    Article  CAS  Google Scholar 

  34. A.K.M. Akhter Hossain, M.L. Rahman, Enhancement of microstructure and initial permeability due to Cu Substitution in Ni0.50-xCuxZn0.50Fe2O4 ferrite. J. Magn. Magn. Mater. 323, 1954–1962 (2011). https://doi.org/10.1016/j.jmmm.2011.02.031

    Article  CAS  Google Scholar 

  35. I.R. Ibrahim, K.A. Matori, I. Ismail, A study on microwave absorption properties of carbon black and Ni0.60Zn0.40Fe2O4 nanocomposites by tuning the matching-absorbing layer structures. Sci. Rep. 10, 3135 (2020). https://doi.org/10.1038/s41598-020-60107-1

    Article  CAS  Google Scholar 

  36. A.K. Sing, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, Magnetic properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 92, 3872–3876 (2002). https://doi.org/10.1063/1.1504493

    Article  CAS  Google Scholar 

  37. M.D. Rahaman, M.D. Mia, M.N.I. Khan, A.K.M.A. Hossain, Study the effect of sintering temperature on structural, microstructural and electromagnetic properties of 10% Ca-doped Mn0.6Zn0.4Fe2O4. J. Magn. Magn. Mater. 404, 238–249 (2016). https://doi.org/10.1016/j.jmmm.2015.12.029

    Article  CAS  Google Scholar 

  38. B.C. Das, F. Alam, A.K.M. Akhter Hossain, The crystallographic, magnetic, and electrical properties of Gd3+ substituted Ni-Cu-Zn mixed ferrites. J. Phys. Chem. Solids (2020). https://doi.org/10.1016/j.jpcs.2020.109433

    Article  Google Scholar 

  39. G. Umapathy, G. Senguttuvan, L.J. Berchmans, V. Sivakumar, Structural, dielectric and AC conductivity studies of Zn substituted nickel ferrites prepared by combustion technique. J. Mater. Sci. Mater. Electron. 27, 7062–7072 (2016). https://doi.org/10.1007/s10854-016-4664-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the following financial support: Office of Research and Extension, Bangladesh University of Textiles, Dhaka, Bangladesh (Code-3632104, FY 2020-2021, S/N 9, BUTEX/2019/RnE/0018, 23.08.2020). We are grateful to the Solid-State Physics Laboratory of Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, for allowing us to do this research.

Funding

The authors gratefully acknowledge the following financial support: Office of Research and Extension, Bangladesh University of Textiles, Dhaka, Bangladesh (Code-3632104, FY 2020-2021, S/N 9, BUTEX/2019/RnE/0018, 23.08.2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Harun-Or-Rashid.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harun-Or-Rashid, M., Rahman, M.M., Arifuzzaman, M. et al. Structural, magnetic, and electrical properties of Ni0.38−xCu0.15+yZn0.47+xyFe2O4 synthesized by sol–gel auto-combustion technique. J Mater Sci: Mater Electron 32, 13761–13776 (2021). https://doi.org/10.1007/s10854-021-05953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05953-z

Navigation