Log in

Dielectric and structural properties of Co0.6Zn0.4Fe2O4 nanoferrites: sol–gel synthesis

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study investigated the synthesis and analysis of Co–Zn nanoferrites, specifically Co0.6Zn0.4Fe2O4, using the sol–gel method. The morphological, structural, and electrical properties of these ferrites were explored. The Co0.6Zn0.4Fe2O4 spinel ferrite was synthesized using metal nitrate reagents and ethylene glycol, followed by a series of heating and sintering processes. Rietveld-refined X-ray diffraction (XRD) confirmed the crystalline structure and phase purity, revealing a monophasic spinel structure. Scanning electron microscopy (SEM) analysis showed distinct grain agglomeration and porosity, indicating the material’s unique microstructure. Impedance measurements further characterized the optical and electrical properties. The electrical conductivity of Co0.6Zn0.4Fe2O4 demonstrated a thermally activated conduction process, adhering to Jonscher’s universal power law. The complex impedance analysis revealed thermally activated behavior, confirming the presence of relaxation processes influenced by temperature. Nyquist plots indicated the contributions of grains, grain boundaries, and electrodes to the electrical behavior. The complex electrical modulus and dielectric studies provided insights into the dielectric characteristics, confirming high space charge polarization at grain boundaries and low dielectric loss. These findings suggested that Co0.6Zn0.4Fe2O4 nanoferrites synthesized via the sol–gel method exhibited desirable electrical and structural properties, making them promising for various technological applications.

Graphical Abstract

Sol–gel synthesis steps for Co0.6Zn0.4Fe2O4 ferrite.

Highlights

  • The sol–gel process is used to produce the nanomagnetic system Co0.6Zn0.4Fe2O4.

  • The activation energy was evaluated using conductivity, complex impedance (Z″), and complex modulus (M″), and the obtained values are near signifying that charge carriers must overcome equivalent energy barriers while conducting and relaxing.

  • The electrical conductivity of Co0.6Zn0.4Fe2O4 demonstrated a thermally activated conduction process, adhering to Jonscher’s universal power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Omri A, Dhahri E, Costa BFO, Valente MA (2020) Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol-gel. J Magn Magn Mater 499:166243

    Article  CAS  Google Scholar 

  2. Omri A, Dhahri E, Costa BFO, Valente MA (2021) Study of structural, morphological, Mössbauer and dielectric properties of NiFeCoO4 prepared by a sol gel method. J Sol Gel Sci Technol 98:364–375

    Article  CAS  Google Scholar 

  3. Kanwal M, Ahmad I, Meydan T, Cuenca J, Williams P, Farid M, Murtaza G (2018) Structural, magnetic and microwave properties of gadolinium-substituted Ca-Ba M-type hexagonal ferrites. J Electron Mater 47:5370–5377

    Article  CAS  Google Scholar 

  4. Farid HMT, Ahmad I, Ali I, Ramay SM, Mahmood A (2019) Study of spinel ferrites with addition of small amount of metallic elements. J Electroceram 42:57–66

    Article  CAS  Google Scholar 

  5. Hathout AS, Aljawish A, Sabry BA, El-Nekeety AA, Roby MH, Deraz NM, Aly SE, Abdel-Wahhab MA (2017) Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. J Appl Pharm Sci 7:086–092

    Article  CAS  Google Scholar 

  6. Oumezzine E, Hcini S, Baazaoui M, Hlil E-K, Oumezzine M (2015) Structural, magnetic and magnetocaloric properties of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol 278:189–195

    Article  CAS  Google Scholar 

  7. Hcini S, Selmi A, Rahmouni H, Omri A, Bouazizi ML (2017) Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T = Ni, Mg) ferrite nanoparticles prepared by sol gel method. Ceram Int 43:2529–2536

    Article  CAS  Google Scholar 

  8. Saini A, Kumar P, Ravelo B, Lallechere S, Thakur A, Thakur P (2016) Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Eng Sci Technol Int J 19:911–916

    Google Scholar 

  9. Horchani M, Omri A, Benali A, Eddine MS, Tozri A, Dhahri E, Graca M, Valente M, Jakka S, Costa B (2022) Synthesis and investigation on the microstructural and electrical proprieties of Ni0.1Co0.5Cu0.4Fe2O4 ferrite prepared using sol-gel route. J Solid State Chem 308:122898

    Article  CAS  Google Scholar 

  10. Fang M, Ström V, Olsson RT, Belova L, Rao KV (2011) Rapid mixing: a route to synthesize magnetite nanoparticles with high moment. Appl Phys Lett 99:222501.

    Article  Google Scholar 

  11. Sickafus KE, Wills JM, Grimes NW (1999) Structure of spinel. J Am Ceram Soc 82:3279–3292

    Article  CAS  Google Scholar 

  12. Aneeta Manjari P, Mary PR, Sanjib N, Sugato H, Manisha S, Zvonko J, Hoe Joon K (2023) Synthesis and application of mixed-spinel magnesioferrite: structural, vibrational, magnetic, and electrochemical sensing properties. Mater Chem Front 7:72–84

    Article  Google Scholar 

  13. Nayak S, Ghorai S, Padhan AM, Hajra S, Svedlindh P, Murugavel P (2022) Cationic redistribution induced spin-glass and cluster-glass states in spinel ferrite. Phys Rev B 106(17):174402

    Article  CAS  Google Scholar 

  14. Oh W, Hajra S, Divya S, Panda S, Oh Y, Jaglic Z, Phakkhananan P, Oh TH, Hoe Joon K (2023) Contact electrification of porous PDMS-nickel ferrite composites for effective energy harvesting. Mater Sci Eng B 292:116397

    Article  CAS  Google Scholar 

  15. Bhargava H, Lakshmi N, Sebastian V, Reddy V, Venugopalan K, Gupta A (2009) Investigation of the large magnetic moment in nano-sized Cu0.25Co0.25Zn0.5Fe2O4. J Phys D Appl Phys 42:245003

    Article  Google Scholar 

  16. Chiu W, Radiman S, Abd-Shukor R, Abdullah M, Khiew P (2008) Tunable coercivity of CoFe2O4 nanoparticles via thermal annealing treatment. J Alloys Compd 459:291–297

    Article  CAS  Google Scholar 

  17. Meaz T, Attia S, El Ata AA (2003) Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J Magn Magn Mater 257:296–305

    Article  CAS  Google Scholar 

  18. Köseoğlu Y, Baykal A, Gözüak F, Kavas H (2009) Structural and magnetic properties of CoxZn1−xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28:2887–2892

    Article  Google Scholar 

  19. Duong GV, Turtelli RS, Hanh N, Linh D, Reissner M, Michor H, Fidler J, Wiesinger G, Grössinger R (2006) Magnetic properties of nanocrystalline Co1−xZnxFe2O4 prepared by forced hydrolysis method. J Magn Magn Mater 307:313–317

    Article  CAS  Google Scholar 

  20. Arulmurugan R, Vaidyanathan G, Sendhilnathan S, Jeyadevan B (2005) Preparation and properties of temperature-sensitive magnetic fluid having Co0.5Zn0.5Fe2O4 and Mn0.5Zn0.5Fe2O4 nanoparticles. Phys B Condens Matter 368:223–230

    Article  CAS  Google Scholar 

  21. Hcini S, Omri A, Boudard M, Bouazizi ML, Dhahri A, Touileb K (2018) Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method. J Mater Sci Mater Electron 29:6879–6891

    Article  CAS  Google Scholar 

  22. Sutka A, Gross K, Mezinskis G, Bebris G, Knite M (2011) The effect of heating conditions on the properties of nano-and microstructured Ni–Zn ferrite. Phys Scr 83:025601

    Article  Google Scholar 

  23. Nayak P (2008) Synthesis and characterization of cadmium ferrite. Mater Chem Phys 112:24–26

    Article  CAS  Google Scholar 

  24. Shobana M, Rajendran V, Jeyasubramanian K, Kumar NS (2007) Preparation and characterisation of NiCo ferrite nanoparticles. Mater Lett 61:2616–2619

    Article  CAS  Google Scholar 

  25. Mallapur M, Shaikh P, Kambale R, Jamadar H, Mahamuni P, Chougule B (2009) Structural and electrical properties of nanocrystalline cobalt substituted nickel zinc ferrite. J Alloys Compd 479:797–802

    Article  CAS  Google Scholar 

  26. Azadmanjiri J, Salehani H, Barati M, Farzan F (2007) Preparation and electromagnetic properties of Ni1−xCuxFe2O4 nanoparticle ferrites by sol–gel auto-combustion method. Mater Lett 61:84–87

    Article  CAS  Google Scholar 

  27. Sujoy S, Ram Prakash S, Ashish R, Aditya M, Amanat A, Himalay B, Rajeev R (2023) Inducing ferromagnetism and magnetoelectric coupling in the ferroelectric alloy system BiFeO3–PbTiO3 via additives. J Appl Phys 133:064101

    Article  Google Scholar 

  28. Sahu M, Pradhan SK, Hajra S, Panigrahi BK, Choudhary RNP (2019) Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)–0.1(PbZr0.48Ti0.52O3). J Appl Phys 125:183

    Article  CAS  Google Scholar 

  29. Duong GV, Turtelli RS, Nunes W, Schafler E, Hanh N, Grössinger R, Knobel M (2007) Ultrafine Co1−xZnxFe2O4 particles synthesized by hydrolysis: effect of thermal treatment and its relationship with magnetic properties. J Non Cryst Solids 353:805–807

    Article  CAS  Google Scholar 

  30. Arulmurugan R, Jeyadevan B, Vaidyanathan G, Sendhilnathan S (2005) Effect of zinc substitution on Co–Zn and Mn–Zn ferrite nanoparticles prepared by co-precipitation. J Magn Magn Mater 288:470–477

    Article  CAS  Google Scholar 

  31. Tahar LB, Basti H, Herbst F, Smiri L, Quisefit J, Yaacoub N, Grenèche J, Ammar S (2012) Co1−xZnxFe2O4 (0 ≤ x ≤ 1) nanocrystalline solid solution prepared by the polyol method: characterization and magnetic properties. Mater Res Bull 47:2590–2598

    Article  CAS  Google Scholar 

  32. Köseoğlu Y, Alan F, Tan M, Yilgin R, Öztürk M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634

    Article  Google Scholar 

  33. Anwar M, Ahmed F, Koo BH (2014) Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0⩽ x⩽ 0.7) ferrites. Acta Mater 71:100–107

    Article  CAS  Google Scholar 

  34. Mahmood A, Warsi MF, Ashiq MN, Ishaq M (2013) Substitution of La and Fe with Dy and Mn in multiferroic La1−xDyFe1−yMnyO3 nanocrystallites. J Magn Magn Mater 327:64–70

    Article  CAS  Google Scholar 

  35. Abdeen A, Hemeda O, Assem E, El-Sehly M (2002) Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J Magn Magn Mater 238:75–83

    Article  CAS  Google Scholar 

  36. Ahmed M, Afify H, El Zawawia I, Azab A (2012) Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magn Magn Mater 324:2199–2204

    Article  CAS  Google Scholar 

  37. Hcini S, Zemni S, Triki A, Rahmouni H, Boudard M (2011) Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites. J Alloys Compd 509:1394–1400

    Article  CAS  Google Scholar 

  38. Kaur N, Kaur M (2014) Processing and application of ceramics. Proc Appl Ceram 8(3):137–143

    Article  Google Scholar 

  39. Sozeri H, Durmus Z, Baykal A (2012) Structural and magnetic properties of triethylene glycol stabilized ZnxCo1−xFe2O4 nanoparticles. Mater Res Bull 47:2442–2448

    Article  CAS  Google Scholar 

  40. López-Ortega A, Lottini E, Fernandez CdeJ, Sangregorio C (2015) Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem Mater 27:4048–4056

    Article  Google Scholar 

  41. Singh A, Gangwar H, Dehiya B (2017) Synthesis and microstructural characterization of pure cobalt ferrite for DC electrical study. J Mater Sci Mech Eng 4:136–141

    Google Scholar 

  42. Zalite I, Heidemane G, Krūmiņa A, Rašmane D, Maiorov M (2017) ZnFe2O4 containing nanoparticles: synthesis and magnetic properties. Mater Sci Appl Chem 34:38–44

    CAS  Google Scholar 

  43. Silambarasu A, Manikandan A, Balakrishnan K (2017) Room-temperature superparamagnetism and enhanced photocatalytic activity of magnetically reusable spinel ZnFe2O4 nanocatalysts. J Supercond Nov Magn 30:2631–2640

    Article  CAS  Google Scholar 

  44. Zhang Y, Chen Y, Kou Q, Wang Z, Han D, Sun Y, Yang J, Liu Y, Yang L (2018) Effects of Nd concentration on structural and magnetic properties of ZnFe2O4 nanoparticles. J Mater Sci Mater Electron 29:3665–3671

    Article  CAS  Google Scholar 

  45. Manikandan A, Kennedy LJ, Bououdina M, Vijaya JJ (2014) Synthesis, optical and magnetic properties of pure and Co-doped ZnFe2O4 nanoparticles by microwave combustion method. J Magn Magn Mater 349:249–258

    Article  CAS  Google Scholar 

  46. Rouessac F, Rouessac A, Cruché D, Duverger-Arfuso C, Martel A (2019) Analyse chimique-9e éd.: Méthodes et techniques instrumentales (Dunod)

  47. Brabers V (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33:563–572

    Article  CAS  Google Scholar 

  48. Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99:1727

    Article  CAS  Google Scholar 

  49. Sharifi I, Shokrollahi H (2012) Nanostructural, magnetic and Mössbauer studies of nanosized Co1−xZnxFe2O4 synthesized by co-precipitation. J Magn Magn Mater 324:2397–2403

    Article  CAS  Google Scholar 

  50. Nouri A, Zamanian A, Kazemzadeh A, Bahrevar M, Ali-Ramaji S (2014) Synthesis and characterization of cobalt zinc ferrite-chitosan core-shell nanoparticles. Int Mater Phys J 2:16–20

    Google Scholar 

  51. Li J, Pan Y, Qiu F, Wu Y, Guo J (2008) Nanostructured Nd: YAG powders via gel combustion: the influence of citrate-to-nitrate ratio. Ceram Int 34:141–149

    Article  CAS  Google Scholar 

  52. James A, Prakash C, Prasad G (2006) Structural properties and impedance spectroscopy of excimer laser ablated Zr substituted BaTiO3 thin films. J Phys D Appl Phys 39:1635

    Article  CAS  Google Scholar 

  53. Hcini F, Hcini S, Wederni MA, Alzahrani B, Al Robei H, Khirouni K, Zemni S, Bouazizi ML (2022) Structural, optical, and dielectric properties for Mg0·6Cu0·2Ni0·2Cr2O4 chromite spinel. Phys B Condens Matter 624:413439

    Article  CAS  Google Scholar 

  54. Verwey E, de Boer JH (1936) Cation arrangement in a few oxides with crystal structures of the spinel type. Recl Trav Chim Pays Bas 55:531–540

    Article  CAS  Google Scholar 

  55. Devan R, Kolekar Y, Chougule B (2006) Effect of cobalt substitution on the properties of nickel–copper ferrite. J Phys Condens Matter 18:9809

    Article  CAS  Google Scholar 

  56. Hajlaoui ME, Dhahri R, Hnainia N, Benchaabane A, Dhahri E, Khirouni K (2019) Conductivity and giant permittivity study of Zn0.5Ni0.5Fe2O4 spinel ferrite as a function of frequency and temperature. RSC Adv 9:32395–32402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Messaoudi A, Omri A, Benali A, Ghebouli MA, Hamdaoui N, Ajjel R, Ghebouli B, Costa BFO, Graca MFP, Khirouni K (2023) Multifaceted analysis of Co0.6Zn0.4Fe2O4 spinel ferrite: a comprehensive investigation into optics, dielectrics. SSRN Elsevier. Preprint at https://doi.org/10.2139/ssrn.4539237

  58. Chihaoui N, Dhahri R, Bejar M, Dharhi E, Costa L, Graça M (2011) Electrical and dielectric properties of the Ca2MnO4−δ system. Solid State Commun 151:1331–1335

    Article  CAS  Google Scholar 

  59. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  60. Harimochi H, Kitagawa J, Ishizaka M, Kadoya Y, Yamanishi M, Matsuishi S, Hosono H (2004) Observation of Jonscher law in ac hop** conduction of the electron-doped nanoporous crystal 12CaO·7Al2O3 in a THz frequency range. Phys Rev B 70:193104

    Article  Google Scholar 

  61. Abdel-Wahab F, Maksoud H, Kotkata M (2005) Electrical conduction and dielectric relaxation in semiconductor SeSm0.005. J Phys D Appl Phys 39:190

    Article  Google Scholar 

  62. Hadded A, Massoudi J, Dhahri E, Khirouni K, Costa B (2020) Structural, optical and dielectric properties of Cu1.5Mn1.5O4 spinel nanoparticles. RSC Adv 10:42542–42556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Verwey E, De Boer F, Van Santen J (1948) Cation arrangement in spinels. J Chem Phys 16:1091–1092

    Article  Google Scholar 

  64. Chandra Babu Naidu K, Narasimha Reddy V, Sofi Sarmash T, Kothandan D, Subbarao T, Suresh Kumar N (2019) Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system. J Aust Ceram Soc 55:201–218

    Article  CAS  Google Scholar 

  65. Raghuram N, Rao TS, Naidu KCB (2019) Investigations on functional properties of hydrothermally synthesized Ba1−xSrxFe12O19 (x= 0.0−0.8) nanoparticles. Mater Sci Semicond Process 94:136–150

    Article  CAS  Google Scholar 

  66. Naidu KCB, Wuppulluri M (2018) Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technologies. IEEE Trans Magn 54:1–8

    Article  Google Scholar 

  67. Chavan P, Naik L, Belavi P, Chavan G, Ramesha C, Kotnala R (2017) Studies on electrical and magnetic properties of Mg-substituted nickel ferrites. J Electron Mater 46:188–198

    Article  CAS  Google Scholar 

  68. Khadhraoui S, Triki A, Hcini S, Zemni S, Oumezzine M (2014) Variable-range-hop** conduction and dielectric relaxation in Pr0. 6Sr0.4Mn0.6Ti0.4O3±δ perovskite. J Magn Magn Mater 371:69–76

    Article  CAS  Google Scholar 

  69. Barsoukov E, Macdonald JR (2018) Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons

  70. Baaziz H, Maaloul N, Tozri A, Rahmouni H, Mizouri S, Khirouni K, Dhahri E (2015) Effect of sintering temperature and grain size on the electrical transport properties of La0.67Sr0.33MnO3 manganite. Chem Phys Lett 640:77–81

    Article  CAS  Google Scholar 

  71. Nyquist H (1932) Regeneration theory. Bell Syst Tech J 11:126–147

    Article  Google Scholar 

  72. Panda R, Behera D (2014) Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J Alloys Compd 587:481–486

    Article  CAS  Google Scholar 

  73. Amor S, Benali A, Bejar M, Dhahri E, Khirouni K, Valente M, Graça M, Al-Turjman F, Rodriguez J, Radwan A (2019) Modulation of magnetism and study of impedance and alternating current conductivity of Zn0.4Ni0.6Fe2O4 spinel ferrite. J Mol Struct 1184:298–304

    Article  CAS  Google Scholar 

  74. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  75. Johnson D (2008) ZView: a software program for IES analysis. Version 2.8. Scribner Associates, Southern Pines, NC

    Google Scholar 

  76. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55:6218–6227

    Article  CAS  Google Scholar 

  77. Hajlaoui ME, Dhahri R, Hnainia N, Benchaabane A, Dhahri E, Khirouni K (2020) Dielectric spectroscopy study of the Ni0.2Zn0. 8Fe2O4 spinel ferrite as a function of frequency and temperature. Mater Sci Eng B 262:114683

    Article  CAS  Google Scholar 

  78. Omri A, Bejar M, Dhahri E, Es-Souni M, Valente M, Graça M, Costa L (2012) Electrical conductivity and dielectric analysis of La0.75 (Ca, Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J Alloys Compd 536:173–178

    Article  CAS  Google Scholar 

  79. Prabakar K, Narayandass SK, Mangalaraj D (2002) Impedance and electric modulus analysis of Cd0.6Zn0.4Te thin films. Cryst Res Technol J Exp Ind Crystallogr 37:1094–1103

    Article  CAS  Google Scholar 

  80. Muralidharan P, Venkateswarlu M, Satyanarayana N (2005) Acid catalyst concentration effect on structure and ion relaxation studies of Li2O–P2O5–B2O3–SiO2 glasses synthesized by sol–gel process. J Non Cryst Solids 351:583–594

    Article  CAS  Google Scholar 

  81. Chandran A, George K (2014) Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J Nanoparticle Res 16:2238

    Article  Google Scholar 

  82. Arais A, Rady K, Shams M (2018) AC conductivity and dielectric properties of Mn-Zn ferrites. Bulg J Phys 45:44–53

    Google Scholar 

  83. Dar MA, Majid K, Batoo KM, Kotnala R (2015) Dielectric and impedance study of polycrystalline Li0.35−0.5XCd0.3NiXFe2.35−0.5XO4 ferrites synthesized via a citrate-gel auto combustion method. J Alloys Compd 632:307–320

    Article  Google Scholar 

  84. Koops C (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 83:121

    Article  CAS  Google Scholar 

  85. Wagner KW (1913) Zur theorie der unvollkommenen dielektrika. Ann Phys 345:817–855

    Article  Google Scholar 

  86. Ahmed MA, El-Dek SI, Rashad MM (2011) Structural, magnetic and electrical properties of CoFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J Alloys Compd 509:6171–6178

    Google Scholar 

  87. Mazen SA, Rashad MM, Yahia IS (2010) Structural, magnetic and electrical properties of NiFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J Magn Magn Mater 324:2026–2032

    Google Scholar 

  88. Ahmed MA, El-Dek SI, Rashad MM (2012) Structural, magnetic and electrical properties of MnFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J Alloys Compd 512:181–187

    Google Scholar 

  89. Mazen SA, Rashad MM, Yahia IS (2009) Structural, magnetic and electrical properties of ZnFe2O4 nanoparticles prepared by sol-gel auto-combustion method. J Magn Magn Mater 323:1598–1604

    Google Scholar 

  90. Mazen SA, Rashad MM, Yahia IS (2009) Structural, magnetic and electrical properties of Co0.5Zn0.5Fe2O4 nanoparticles prepared by sol-gel auto-combustion method. J Magn Magn Mater 323:2850–2856

    Google Scholar 

  91. Ahmed MA, El-Dek SI, Rashad MM (2009) Structural, magnetic and electrical properties of Co0.7Zn0.3Fe2O4 nanoparticles prepared by sol-gel auto-combustion method 2011. J Alloys Compd 509:4884–4890

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research with the collaboration of national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged. This work was funded by the Researchers Supporting Project No. RSP2024R243 at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Authors statement conceptualization: Messaoudi. Data curation: Omri, Benali. Formal analysis: M.A. Ghebouli, M. Fatmi. Methodology: Hamdaoui, Ajjel, M. Habila. Software: Djemli, Alothman, Mohammad. Validation: Costa, Graca. Visualization: Khirouni. Roles/writing – original draft: M. Fatmi. Writing – review editing: A. Djemli.

Corresponding authors

Correspondence to Aref Omri or M. Fatmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messaoudi, A., Omri, A., Benali, A. et al. Dielectric and structural properties of Co0.6Zn0.4Fe2O4 nanoferrites: sol–gel synthesis. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06396-8

Keywords

Navigation