Log in

Monodomain Design and Permeability Study of High-Q-Factor NiCuZn Ferrites for Near-Field Communication Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

For application in near-field communication (NFC) systems, monodomain NiCuZn ferrite has been prepared by the conventional solid-state reaction method. The results show that the monodomain design is effective; the Q factor of this kind of sample with 0.3 wt.% Co2O3 do** could be as high as 118.19. To obtain guidelines for preparing high-quality materials, the magnetic spectra of monodomain ferrite samples are studied via a numerical fitting method. According to the results of this permeability spectra fitting, the magnetic spectra of our prepared samples are mainly determined by the static spin susceptibility K s, spin resonance frequency ω 0, and relaxation frequency ω r. Specifically, we find that ω r varies with the frequency of the external field f. Furthermore, we demonstrate that Co2O3 influences the relationship between ω r and the frequency of the external field. According to theoretical expectations, a higher Q factor at frequency of 13.56 MHz could be obtained by using an appropriate Co2O3 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ohmura et al., in 2013 Proceedings of the International Symposium on Antennas and Propagation, ed. by IEEE (Piscataway, NJ, USA), pp. 1158–1161.

  2. S.Q. Yan, W.H. Liu, Z.Y. Chen, Y. Nie, X. Wang, and Z.K. Feng, J. Appl. Phys. 115, 17A529 (2014).

    Article  Google Scholar 

  3. F. Tudorache and I. Petrila, J. Electron. Mater. 43, 3522 (2014).

    Article  Google Scholar 

  4. H. Su, H.W. Zhang, X.L. Tang, and Y.L. **g, J. Appl. Phys. 103, 093903 (2008).

    Article  Google Scholar 

  5. P.J. van der Zaag, P.J. van der Valk, and M.Th. Rekveldt, Appl. Phys. Lett. 69, 2927 (1996).

    Article  Google Scholar 

  6. P.J. van der Zaag, J. Magn. Magn. Mater. 196–197, 315 (1999).

    Article  Google Scholar 

  7. K. Kawano, M. Hachiya, Y. Iijima, N. Sato, and Y. Mizuno, J. Magn. Magn. Mater. 321, 2488 (2009).

    Article  Google Scholar 

  8. M. Yan, J. Hu, W. Luo, and W.Y. Zhang, J. Magn. Magn. Mater. 303, 249 (2006).

    Article  Google Scholar 

  9. J. Hu, M. Yan, and W.Y. Zhang, J. Mater. Chem. Phys. 98, 459 (2006).

    Article  Google Scholar 

  10. Q. Lin, Z. Ye, C. Lei, H. Huang, J. Xu, and Y. He, Mater. Res. Innov. 17, 287 (2013).

    Article  Google Scholar 

  11. M.C. Dimri, S.C. Kashyap, D.C. Dube, and S.K. Mohanta, J. Electroceram. 16, 331 (2006).

    Article  Google Scholar 

  12. H. Su, H.W. Zhang, X.L. Tang, B.Y. Liu, and Y.L. **, Phys. Status Solidi A 204, 576 (2007).

    Article  Google Scholar 

  13. H. Su, H.W. Zhang, X.L. Tang, B.Y. Liu, and Z.Y. Zhong, Physica B 405, 4006 (2010).

    Article  Google Scholar 

  14. K. Zehani, F. Mazaleyrat, V. Loyau, and E. Laboure, J. Appl. Phys. 109, 07A504 (2011).

    Article  Google Scholar 

  15. S.H. Seo and J.H. Oh, IEEE Trans. Magn. 35, 5 (1999).

    Article  Google Scholar 

  16. J. Hu, M. Yan, and W. Luo, Physica B 368, 251 (2005).

    Article  Google Scholar 

  17. S.Q. Yan, L. Dong, Z.Y. Chen, X. Wang, and Z.K. Feng, J. Magn. Magn. Mater. 353, 47 (2014).

    Article  Google Scholar 

  18. H. Su, H.W. Zhang, X.L. Tang, B.Y. Liu, and Z.Y. Zhong, J. Alloys Compd. 475, 683 (2009).

    Article  Google Scholar 

  19. N. Ohmura, E. Takase, S. Ogino, Y. Okano, and S. Arai, in 2013 International Symposium on Intelligent Signal Processing and Communication Systems, vol 627 (Naha, Japan) 12–15 Nov 2013.

  20. T. Tsutaoka, M. Ueshima, T. Tokunaga, T. Nakamura, and K. Hatakeyama, J. Appl. Phys. 78, 3983 (1995).

    Article  Google Scholar 

  21. T. Nakamura, J. Appl. Phys. 88, 348 (2000).

    Article  Google Scholar 

  22. C. Kittel, J. Phys. Radium 12, 332 (1951).

    Article  Google Scholar 

  23. G.T. Rado, Rev. Mod. Phys. 25, 81 (1953).

    Article  Google Scholar 

  24. C.H. Mu, Y. Liu, Y.Q. Song, L.G. Wang, and H.W. Zhang, J. Appl. Phys. 109, 123925 (2011).

    Article  Google Scholar 

  25. B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed. (Hoboken: Wiley, 2009), pp. 14–438.

    Google Scholar 

  26. J. Jankovskis, J. Magn. Magn. Mater. 272–276, e1847 (2004).

    Article  Google Scholar 

  27. A. Visintin, Physica B 233, 365 (1997).

    Article  Google Scholar 

  28. S.S. Kalarickal, N. Mo, P. Krivosik, and C.E. Patton, Phys. Rev. 79, 094427 (2009).

    Article  Google Scholar 

  29. V. Tsakaloudi and V.T. Zaspalis, J. Magn. Magn. Mater. 322, 517 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yan, S., Cheng, Y. et al. Monodomain Design and Permeability Study of High-Q-Factor NiCuZn Ferrites for Near-Field Communication Application. J. Electron. Mater. 44, 4367–4372 (2015). https://doi.org/10.1007/s11664-015-3978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-3978-z

Keywords

Navigation