Log in

Characterization of magnetic properties and microstructures for Co2+ ions-doped Ni–Cu–Zn ferrites

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, novel Ni–Cu–Zn ferrites with the chemical formula [Ni0.6Zn0.4][Cu0.2CoxFe1.8−x]O4 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25) doped with Co2+ ions were designed and manufactured by standard solid-state reaction method. The magnetic properties, surface characteristics, and ion occupancy of ferrites were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM), and we explained the different mechanisms of the results and the relationship between magnetic properties and microstructures. For the obtained samples, cobalt ions entered the lattice, and all samples were characterized as spinel structures. As the do** amount of Co2+ ions increases, the lattice constant and volume of the sample also increases. With an appropriate do** level, Co2+ ions-doped Ni–Cu–Zn ferrites can maintain higher saturation magnetization, higher magnetic permeability, and lower hysteresis loss. When x ≤ 0.1, the saturation magnetization Ms increases significantly as the do** amount of Co2+ ions increases, but when x > 0.1, the value decreases. The experimental results show that the saturation magnetization value is 118.08 emu/g, the magnetic permeability value is 39.47 H/m, and the hysteresis loss is 1.192 mW/cm3 at an optimum do** amount. Therefore, the sample achieves the best magnetic properties when the do** amount is 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.L. Zhao, Q. Lv, Z.M. Shen, Fabrication and microwave absorbing properties of Ni–Zn spinel ferrites. J. Alloy. Compd. 480(2), 634–638 (2009)

    Article  CAS  Google Scholar 

  2. S.J. Feng, J. Li, S.G. Huang, Magnetic hysteresis loss crossover in Ni0.4Zn0.6Fe1.95Ti0.05O4 ferrite. J. Alloy. Compd. 660, 398–401 (2016)

    Article  CAS  Google Scholar 

  3. T. Nakamura, Low-temperature sintering of NiZnCu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168(3), 285–291 (1997)

    Article  CAS  Google Scholar 

  4. M. Fujimoto, Inner stress induced by Cu metal precipitation at grain boundaries in low-temperature-fired Ni–Zn–Cu ferrite. J. Am. Ceram. Soc. 77(11), 2873–2878 (1994)

    Article  CAS  Google Scholar 

  5. P. Yang, Z.Q. Liu, H.B. Qi, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni–Zn ferrites. Ceram Int. 45(11), 13685–13691 (2019)

    Article  CAS  Google Scholar 

  6. R.C. Kambale, N.R. Adhate, B.K. Chougule, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrites synthesized by citrate–nitrate combustion method. J. Alloy. Compd. 491(1–2), 372–377 (2010)

    Article  CAS  Google Scholar 

  7. T. Nakamura, Y. Okano, S. Miura, Interfacial diffusion between Ni–Zn–Cu ferrite and Ag during sintering. J. Mater. Sci. 33(4), 1091–1094 (1998)

    Article  CAS  Google Scholar 

  8. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Appl. Phys. Lett 100(4), 42407 (2012)

    Article  CAS  Google Scholar 

  9. L. Li, L. Peng, Y. Li et al., Structure and magnetic properties of Co-substituted NiZn ferrite thin films synthesized by the sol–gel process. J. Magn. Magn. Mater. 324(1), 60–62 (2012)

    Article  CAS  Google Scholar 

  10. X. Pan, A. Sun, Y. Han, Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. J. Mater. Sci. 30(5), 4644–4657 (2019)

    CAS  Google Scholar 

  11. M.P. Reddy, W. Madhuri, N.R. Reddy, Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method. Mater. Sci. Eng. C 30(8), 1094–1099 (2010)

    Article  CAS  Google Scholar 

  12. H.B. Wang, J.H. Liu, W.F. Li, Structural, dynamic magnetic and dielectric properties of Ni015Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method. J. Alloy. Compd. 461(1), 373–377 (2008)

    Article  CAS  Google Scholar 

  13. L. Néel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  Google Scholar 

  14. G.D. Tang, D.H. Ji, Y.X. Yao, S.P. Liu, Z.Z. Li, W.H. Qi, Q.J. Han, X. Hou, D.L. Hou, Quantum-mechanical method for estimating ion distributions in spinel ferrites. Appl. Phys. Lett. 98, 072511 (2011)

    Article  CAS  Google Scholar 

  15. Y.M. Kwon, M.Y. Lee, M. Mustaqima, C. Liu, B.W. Lee, Structural and magnetic properties of Ni0.6Zn0.4Fe2O4 ferrite prepared by solid state reaction and sol–gel. J. Magn. Magn. Mater. 19, 64–67 (2014)

    Google Scholar 

  16. J. Jadhav, S. Biswas, A.K. Yadav, S.N. Jha, D. Bhattacharyya, Structural and magnetic properties of nanocrystalline NiZn ferrites: in the context of cationic distribution. J. Alloys Compd. 696, 28–41 (2017)

    Article  CAS  Google Scholar 

  17. N. Singh, A. Agarwal, S. Sanghi, Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrite. Phys. B 406(3), 687–692 (2011)

    Article  CAS  Google Scholar 

  18. R. Kumar, H. Kumar, M. Kumar, Enhanced saturation magnetization in cobalt doped Ni–Zn ferrite nanoparticles. J. Supercond. Nov. Magn. 28(12), 3557–3564 (2015)

    Article  CAS  Google Scholar 

  19. M. Veverka, Z. Jirak, O. Kaman, K. Knızek, M. Marysko, E. Pollert, K. Zaveta, A. Lancok, M. Dlouha, S. Vratislav, Distribution of cations in nanosize and bulk Co–Zn ferrites. Nanotechnology 22, 345701 (2011)

    Article  CAS  Google Scholar 

  20. E.J. Choi, Y.K. Ahn, K.C. Song, D.H. An, B.G. Lee, K.U. Kang, Cation distribution and spin-canted structure in cobalt ferrite particles from a cobalt–iron hydroxide carbonate complex. J. Korean Phys. Soc. 44, 1518–1520 (2004)

    CAS  Google Scholar 

  21. M.K. Fayek, A.A. Bahgat, Y.M. Abbas, L. Moberg, Neutron diffraction and Mossbauer effect study on a cobalt substituted zinc ferrite. J. Phys. C 15, 2509–2518 (1982)

    Article  CAS  Google Scholar 

  22. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Mo ¨ssbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747 (1969)

    Article  CAS  Google Scholar 

  23. A.M. Kumar, P.A. Rao, M.C. Varma, G.S. Choudary, K.H. Rao, Cation distribution in Co0.7Me0.3Fe2O4. J. Mod. Phys. 2, 1083 (2011)

    Article  CAS  Google Scholar 

  24. J.Y. Hu, X.S. Liu, X.C. Kan, Characterization of texture and magnetic properties of Ni0.5Zn0.5TixFe2−xO4 spinel ferrites. J. Magn. Magn. Mater. 489, 165411 (2019)

    Article  CAS  Google Scholar 

  25. A.R. Das, V.S. Ananthan, D.C. Khan, Lattice parameter variation and magnetization studies on titanium-, zirconium-, and tin-substituted nickel–zinc ferrites. J. Appl. Phys. 57(8), 4189–4191 (1985)

    Article  CAS  Google Scholar 

  26. D.C. Khan, M. Misra, Magnetic, Mössbauer and electrical properties of Ti-substituted Ni0.3Zn0.7Fe2O4. Bull. Mater. Sci. 7(3–4), 253–270 (1985)

    Article  Google Scholar 

  27. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, Structural, magnetic, electrical, and magnetoelectric properties of Sm- and Ho-substituted nickel ferrites. J. Phys. Chem. C 115(2), 554–560 (2010)

    Article  CAS  Google Scholar 

  28. D. Hu, F. Zhao, L. Miao, Magnetic properties and microstructures of a Ni–Zn ferrite ceramics co-doped with V2O5 and MnCO3. Ceram. Int. 45(8), 10028–10034 (2019)

    Article  CAS  Google Scholar 

  29. S.S. Kim, D.H. Han, S.B. Cho, Microwave absorbing properties of sintered Ni–Zn ferrite. IEEE Trans. Magn. 30(6), 4554–4556 (1994)

    Article  CAS  Google Scholar 

  30. F. Gen, E. Turhan, H. Kavas, Magnetic and microwave absorption properties of NixZn0.9−xMn0.1Fe2O4 prepared by boron addition. J. Supercond. Nov. Magn. 28(3), 1047–1050 (2015)

    Article  CAS  Google Scholar 

  31. S. Modak, M. Ammar, F. Mazaleyrat, XRD, HRTEM and magnetic properties of mixed spinel nanocrystalline Ni–Zn–Cu-ferrite. J. Alloy. Compd. 473(1), 15–19 (2009)

    Article  CAS  Google Scholar 

  32. P. Priyadharsini, A. Pradeep, P.S. Rao, Structural, spectroscopic and magnetic study of nanocrystalline Ni–Zn ferrites. Mater. Chem. Phys. 116(1), 207–213 (2009)

    Article  CAS  Google Scholar 

  33. H. Su, X. Tang, H. Zhang, Influences of Bi2O3 additive on the microstructure, permeability, and power loss characteristics of Ni–Zn ferrites. J. Magn. Magn. Mater. 321(19), 3183–3186 (2009)

    Article  CAS  Google Scholar 

  34. S.V. Trukhanov, Magnetic and magnetotransport properties of La1xBaxMnO3−x/2 perovskite manganites. J. Mater. Chem. 13(2), 347–352 (2003)

    Article  CAS  Google Scholar 

  35. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, Self-doped lanthanum manganites as a phase-separated system: transformation of magnetic, resonance, and transport properties with do** and hydrostatic compression. J. Appl. Phys. 104(9), 093909 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872004, 51802002), Education Department of Anhui Province (Grant Nos. KJ2013B293, KJ2018A0039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ansong Liu or Xucai Kan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Liu, X., Kan, X. et al. Characterization of magnetic properties and microstructures for Co2+ ions-doped Ni–Cu–Zn ferrites. J Mater Sci: Mater Electron 31, 9057–9064 (2020). https://doi.org/10.1007/s10854-020-03451-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03451-2

Navigation