Log in

Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eklogitic mantle xenolith

Einkristall Infrarotspektren im Bereich der OH Grundschwingungen einer Granat-Omphacit-Kyanit Paragenese in einem eklogitischen Mantelxenolith

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Single crystals of paragenetic garnet (gt), omphacite (cpx) and kyanite (ky) were isolated from an eclogite xenolith from the Zagadochnaya kimberlite, Yakutia (grospydite Z13) and studied by polarized FTIR-microspectrometry in the OH valence vibrational region and by microprobe analyses. The coexisting minerals are homogeneous with respect to major and minor elements and have compositions near gross49pyr26alm20uvar4 (gt), jad45dio47hed6kos2 (cpx) and ky>97. Single crystal spectra show one νOH-band for gt at 3630 cm−1 (halfwidth ca. 100 cm−1) which is very likely caused by vibrations of tetrahedral (OH)4-4− clusters replacing SiO4 4− tetrahedra. Cpx shows one strong, but weakly pleochroic band at 3464 cm−1 (halfwidth ca. 160 cm−1) and a weak satellite band centered at 3620 cm−1) with a distinct pleochroism. Ky OH spectra exhibit two sets of weak sharp pleochroic bands, a triplet, characteristic for high pressure ky, at 3439, 3410, 3387 cm−1) and a doublet at 3279, 3264 cm−1) (halfwidths ca. 10 cm−1) From integral and linear absorbances in the unpolarized spectra defect-hydroxyl contents in the three coexisting minerals were estimated and found near O.OX wt% H2O. The distribution scheme of hydrogen in the paragenetic minerals was evaluated to be cky < ccpx ≪< cgt.

Zusammenfassung

Aus einer Granat (Gt)-Omphacit (Cpx)-Kyanit (Ky) Paragenese eines Eklogit Xenoliths aus dem Zagadochnaya Kimberlit, Jakutien (Grospydit Z13), wurden Einkristalle isoliert und mit polarisierter FTIR-Mikrospektrometrie im OH Valenzschwingungsbereich und mit der Elektronenstrahl-Mikrosonde untersucht. Die koexistierenden Minerale sind hinsichtlich ihrer Haupt- und Nebenelemente homogen und haben Zusammen setzungen von etwa Gross49Pyr26Alm20Uvar4 (Gt), Jad45Dio47Hed6Kos2 (Cpx) and Ky>97 Einkristallspektren von Gt zeigen eine νOH-Bande bei 3630 cm−1) (Halbwerts breite ca. 100 cm−1) die wahrscheinlich von Schwingungen tetraedrischer (OH)4 4− Gruppen, die SiO4 4− Tetraeder ersetzen, herrührt. Cpx zeigt eine starke, aber schwach pleochroitische Bande bei 3464 cm−1 (Halbwertsbreite ca. 160 cm−1) and eine schwache, deutlich pleochroitische Satellitenbande bei 3620 cm−1) Ky OH Spektren zeigen zwei Gruppen von schwachen, scharfen pleochroitischen Banden, ein fur Hochdruck Ky charakteristisches Bandentriplett bei 3439, 3410, 3387 cm−1) and ein Bandendublett bei 3279, 3264 cm−1) (Halbwertsbreiten ca. 10 cm−1) Aus den integralen and linearen Extinktionen der nicht-polarisierten Spektren wurde der Defekt-Hydroxyl Gehalt der drei koexistierenden Minerale abgeleitet and mit O.OX Gew% H2O festgelegt. Das Verteilungsschema des Wasserstoffs kann in der Mineralparagenese mit cKy < cCpx ≪ cGt angegeben werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann L, Cemic L, Langer K (1983) Hydrogarnet substitution in pyrope: a possible location for {“water” in the mantle}. Earth Planet Sci Letters 62: 208–214

    Google Scholar 

  • Aires RD, Rossman GR (1984) The hydrous component in garnets: pyralspites. Am Mineral 69: 1116–1126

    Google Scholar 

  • Andrut M, Langer K, Sobolev NV (1991) Optical spectra and partitioning of Cr3+ in the high-pressure paragenesis pyr/cpx/ky of a mantle eclogite. Terra Abstr 3 (1): 67 S5/20

    Google Scholar 

  • Bell DR, Rossman GR (1992a) Water in Earth's mantle: the role of nominally anhydrous minerals. Science 255: 1391–1397

    Google Scholar 

  • Bell DR, Rossman GR (1992b) The distribution of hydroxyl in garnets from the subcontinental mantle of southern Africa. Contrib Mineral Petrol 111: 161–178

    Google Scholar 

  • Beran A (1971) Messung des Ultrarot-Pleochroismus von Mineralen.XII.Der Pleochroismus der OH-Streckfrequenz in Disthen. Tschermaks Min Petr Mitt 16: 129–135

    Google Scholar 

  • Beran A (1976) Messung des Ultrarot-Pleochroismus von Mineralen.XIV.Der Pleochroismus der OH-Streckfrequenz in Diopsid. Tschermaks Min Petr Mitt 23: 79–85

    Google Scholar 

  • Beran A, Götzinger MA (1987) The quantitative IR spectroscopic determination of structural OH groups in kyanites. Mineral Petrol 36: 41–49

    Google Scholar 

  • Beran A, Zemann J (1969) Messung des Ultrarot-Pleochroismus von Mincralen.VIII.Der Pleochroismus der OH-Streckfrequenz in Andalusit. Tschermaks Min Petr Mitt 13: 285–292

    Google Scholar 

  • Beran A, Zemann J (1971) Messung des Ultrarot-Pleochroismus von Mineralen.XI. Der Pleochroismus der OH-Streckfrequenz in Rutil, Anatas, Brookit and Cassiterit. Tschermaks Min Petr Mitt 15: 71–80

    Google Scholar 

  • Beran A, Zemann J (1986) The pleochroism of a gem-quality enstatite in the region of the OH stretching frequency, with a stereochemical interpretation. Tschermaks Min Petr Mitt 35: 19–25

    Google Scholar 

  • Beran A, Sturma R, Zemann J (1983) Ultrarotspektroskopische Untersuchungen über den OH-Gehalt einiger Granate. Österr Akad Wiss, Math-naturwiss Kl, Anzeiger 1983: 75–79

    Google Scholar 

  • Brunner GO, Wondratschek H, Laves F (1961) Ultrarotuntersuchungen üiber den Einbau von H in natürlichem Quarz. Z Elektrochem 65: 735–750

    Google Scholar 

  • Cameron M, Papike JJ (1980) Crystal chemistry of silicate pyroxenes. In:Prewitt CT (ed) Pyroxenes, Vol 7. Miner Soc Am, pp 5–92

  • Gebert W, Zemann J (1965) Messung des Ultrarot-Pleochroismus von Mineralen. II.Der Pleochroismus der OH-Streckfrequenz in Turmalin. N Jb Miner Mh 1965: 232–236

    Google Scholar 

  • Geiger CA, Langer K, Bell DR, Rossman GR, Winkler B (1991) The hydroxide component in synthetic pyrope. Am Mineral 76: 49–59

    Google Scholar 

  • Hammer VMF, Beran A (1991) Variations in the OH concentration of rutiles from different geological environments. Mineral Petrol 45: 1–9

    Google Scholar 

  • Langer K, Robarick E, Koch-Müller M, Geiger CA, Rüscher C (1991) High pressure crystal growth and H-bearing defects of pyrope. Terra Abstr 3 (1): 63 S5/5

    Google Scholar 

  • Langer K, Robarick E, Sobolev NV, Shatsky VS (1992) Einkristallspektren von Granaten aus diamantführenden Höchstdruckmetamorphiten Kazakhstans: Hinweise auf (OH)4 4−, H2O und FeTi Charge-Transfer. Beih 1, Eur J Mineral 4: 173

    Google Scholar 

  • Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies a function of distances in hydrogen bonds. J Am Chem Soc 77: 6480–6486

    Google Scholar 

  • Ribbe PH (1982) Kyanite, andalusite and other aluminum silicates. In:Ribbe PH (ed) Orthosilicates. Rev Mineral, Vol 5. Miner Soc Am, pp 189–214

  • Rossman GR, Aires RD (1991) The hydrous components in garnets: grossular-hydrogrossular. Am Mineral 76: 1153–1164

    Google Scholar 

  • Rossman GR, Smyth JR (1990) Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am Mineral 75: 775–780

    Google Scholar 

  • Rossman GR, Beran A, Langer K (1989) The hydrous component of pyrope from Dora Maira Massif, Western Alps. Eur J Mineral 1: 151–154

    Google Scholar 

  • Serratosa JM, Bradley WF (1958) Determination of the orientation of OH bond axes in layer silicates by infrared absorption. J Phys Chem 62: 1164–1167

    Google Scholar 

  • Skogby H, Rossman GR (1989) OH in pyroxene: an experimental study of incorporation mechanism and stability. Am Mineral 74: 1059–1069

    Google Scholar 

  • Skogby H, Bell DR, Rossman GR (1990) Hydroxide in pyroxene: variations in the natural environment. Am Mineral 75: 764–774

    Google Scholar 

  • Smyth JR, Bell DR, Rossman GR (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351: 732–735

    Google Scholar 

  • Sobolev NV jr, Kuznetsova IK, Zyuzin NI (1968) The petrology of grospydite xenoliths from the Zagadochnaya kimberlite pipe in Yakutia. J Petrol 9: 253–280

    Google Scholar 

  • Tillmanns E, Zemann J (1965) Messung des Ultrarot-Pleochroismus von Mineralen.I.Der Pleochroismus der OH-Streckfrequenz in Azurit. N Jb Miner Mh 1965: 228–231

    Google Scholar 

  • Tröger WE (1952) Tabellen zur optischen Bestimmung der gesteinsbildenden Minerale. Schweizerbart, Stuttgart, 147 pp

    Google Scholar 

  • Tsuboi M (1950) On the positions of the hydrogen atoms in the crystal structure of muscovite, as revealed by the infra-red absorption study. Bull Chem Soc Japan 23: 83–88

    Google Scholar 

  • Vedder W, McDonald RS (1963) Vibrations of OH-ions in muscovite. J Chem Phys 38: 1583–1590

    Google Scholar 

  • Wilkins RWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58: 508–516

    Google Scholar 

  • Winkler B, Langer K, Johannsen PG (1989) The influence of pressure on the OH valence vibration of zoisite. An infrared spectroscopic study. Phys Chem Minerals 16: 668–671

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. J. Zemann on the occasion of his 70th birthday

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beran, A., Langer, K. & Andrut, M. Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eklogitic mantle xenolith. Mineralogy and Petrology 48, 257–268 (1993). https://doi.org/10.1007/BF01163102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01163102

Keywords

Navigation