Log in

High-temperature X-ray diffraction, Raman and IR spectroscopy on serandite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We collected in situ high-temperature powder X-ray diffraction (XRD) patterns, as well as Raman and Fourier transform infrared (FTIR) spectra on a natural serandite sample. The volumetric thermal expansion coefficient αV (K−1) is determined as a linear function of T (K): 37.6(5) × 10−9 × T + 11.1(3) × 10−6, with an averaged value of 31.7(10) × 10−6 K−1, while the anisotropy of axial thermal expansivities shows the order of αa > αb > αc. The isobaric Grüneisen parameters γiP are constrained as: 0.2–1.6 for most of the lattice vibrations below 500 cm−1; while 0–0.6 for the O–Si–O bending and Si–O stretching modes inside the Si3O9 chains above 500 cm−1. As compared with common silicate phases in the upper mantle and the transition zone, the γiP parameters for the internal vibrations are significantly smaller in silicate chains (serandite, enstatite) than those in Si2O7 groups (wadsleyite) and isolated SiO4 units (forsterite, pyrope), since the rotation of the bridging O atoms (in the direction perpendicular to Si–O–Si) could relax the SiO4 tetrahedra at elevated temperature. The OH-bending vibration of serandite is observed in both Raman-active (1378 cm−1) and IR-active (1389 cm−1) modes, with a temperature-dependence of − 0.07 and − 0.09 cm−1/K, respectively. The red-shift of these OH-bending modes with increasing temperature indicates that the hydrogen bond gets weaker as the O3…O4 distance becomes larger during thermal expansion. Additionally, our polarized FTIR spectra confirm that the stretching mode of the very strong hydrogen bond, a broad absorption region (1400–3300 cm−1), is polarized in the direction of E//b, as reported by Hammer et al. (Am Mineral 83:569–576, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arakcheeva A, Pattison P, Meisser N, Chapuis G, Pekov I, Thelin P (2007) New insight into the pectolite-serandite series: a single crystal diffraction study of Na(Ca1.73Mn0.27)HSi3O9 at 293 and 100 K. Z Kristallogr 222:696–704

    Google Scholar 

  • Black L, Breen C, Yarwood J, Garbev K, Stemmermann P, Gasharova B (2007) Structural features of C-S-H(I) and its carbonation in Air-A Raman spectroscopic study. Part II: carbonated phases. J Am Ceram Soc 90:908–917

    Article  Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50

    Google Scholar 

  • Cliffe MJ, Goodwin AL (2012) PASCal: a principal-axis strain calculator for thermal expansion and compressibility for thermal expansion and compressibility determination. J Appl Crystallogr 45:1321–1329

    Article  Google Scholar 

  • Dowty E (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals I. calculations on ideal silicate-aluminate-germanate structural units. Phys Chem Miner 14:80–93

    Article  Google Scholar 

  • Du W, Clark SM, Walker D (2015) Thermo-compression of pyrope-grossular garnet solid solutions: non-linear compositional dependence. Am Mineral 100:215–222

    Article  Google Scholar 

  • Emsley J (1981) Very strong hydrogen bonding. Chem Soc Rev 9:91–124

    Article  Google Scholar 

  • Farmer VC (ed) (1974) The infrared spectra of minerals. Mineralogical Society, London

    Google Scholar 

  • Frost RL, López A, Theiss FL, Romano AW, Scholz R (2015) A vibrational spectroscopic study of the silicate mineral pectolite—NaCa2Si3O8(OH). Spectrochim Acta A 134:58–62

    Article  Google Scholar 

  • Gillet P, Richet P, Guyot F, Figuet G (1991) High-temperature thermodynamic properties of forsterite. J Geophys Res 96:11805–11816

    Article  Google Scholar 

  • Gillet P, Fiquet G, Malezieux JM, Geiger CA (1992) High-pressure and high-temperature Raman spectroscopy of end-member garnets: pyrope, grossular and andradite. Eur J Mineral 4:651–664

    Article  Google Scholar 

  • Gillet P, Daniel I, Guyot F (1997) Anharmonic properties of Mg2SiO4-forsterite measured from the volume dependence of the Raman spectrum. Eur J Mineral 9:255–262

    Article  Google Scholar 

  • Hammer VMF, Libowitzky E, Rossman GR (1998) Single-crystal IR spectroscopy of very stong hydrogen bonds in pectolite, NaCa2[Si3O8(OH)], and serandite, NaCa2[Si3O8(OH)]. Am Mineral 83:569–576

    Article  Google Scholar 

  • Holl CM, Smyth JR, Jacobsen SD, Frost DJ (2008) Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). Am Mineral 93:598–607

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  Google Scholar 

  • Jackson JM, Palko JW, Andrault D, Sinogeikin SV, Lakshtanov DL, Wang J, Bass JD, Zha C-S (2003) Thermal expansion of natural orthoenstatite up to 1473 K. Eur J Mineral 97:6842–6866

    Google Scholar 

  • Jacobsen SD, Smyth JR, Swope RJ, Sheldon RI (2000) Two proton positions in the very strong hydrogen bond of serandite, NaMn2[Si3O8(OH)]. Am Mineral 85:745–752

    Article  Google Scholar 

  • Kolesov BA, Geiger CA (2000) Low-temperature single-crystal Raman spectrum of pyrope. Phys Chem Miner 27:645–649

    Article  Google Scholar 

  • Kroll H, Kirfel A, Heinemann R, Barbier B (2012) Volume thermal expansion and related thermophysical parameters in the Mg, Fe olivine solid-solution series. Eur J Mineral 24:935–956

    Article  Google Scholar 

  • Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H…O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059

    Google Scholar 

  • Lightfoot P, Woodcock DA, Maple MJ, Villaescusa LA, Wright PA (2001) The widespread of occurrence of negative thermal expansion in zeolites. J Mater Chem 11:212–216

    Article  Google Scholar 

  • Ohashi Y, Finger LW (1978) The role of octahedral cations in pyroxenoid crystal chemistry. I. bustamite, wollastonite, and the pectolite-schizolite-serandite series. Am Mineral 63:274–288

    Google Scholar 

  • Okada T, Narita T, Nagai T, Yamanaka T (2008) Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures. Am Mineral 93:39–47

    Article  Google Scholar 

  • Prewitt CT (1967) Refinement of the structure of pectolite, Ca2NaHSi3O9. Z Kristallogr 125:298–302

    Article  Google Scholar 

  • Prewitt CT, Buerger MJ (1963) Comparison of the crystal structures of wollanstonite and pectolite. Min Soc Am 1:293–302

    Google Scholar 

  • Reynard B, Rubie DC (1996) High-pressure, high-temperature Raman spectroscopic study of ilmenite-type MgSiO3. Am Mineral 81:1092–1096

    Article  Google Scholar 

  • Reynard B, Takir F, Guyot F, Gwanmesia GD, Liebermann RC, Gillet P (1996) High-temperature Raman spectroscopic and X-ray diffraction study of β-Mg2SiO4: insights into its high- temperature thermodynamic porperties and the β- to α-phase-transformation mechanism and kinetics. Am Mineral 81:585–594

    Article  Google Scholar 

  • Takéuchi Y, Kudoh Y (1977) Hydrogen bonding and cation ordering in Magnet Cove pectolite. Z Kristallogr 146:281–292

    Google Scholar 

  • Takéuchi Y, Kudoh Y, Haga N (1973) The interpretation of partial patterson functions and its application to structure analyses of serandite Mn2NaHSi3O9 and banalsite BaNa2Al4Si4O16. Z Kristallogr 138:313–336

    Article  Google Scholar 

  • Takéuchi Y, Kudoh Y, Yamanaka T (1976) Crystal chemistry of the serandite-pectolite series and related minerals. Am Mineral 61:229–237

    Google Scholar 

  • Trots M, Kurnosov A, Ballaran TB, Frost DJ (2012) High-temperature structural behaviors of anhydrous wadsleyite and forsterite. Am Mineral 97:1582–1590

    Article  Google Scholar 

  • Williams ER, Weller MT (2014) A variable-temperature neutron diffraction study of serandite: a Mn-silicate framework with a very strong, two-proton site, hydrogen bond. Am Mineral 99:1755–1760

    Article  Google Scholar 

  • Yang X, Dubrovinsky L, Manthilake MAGM, Wei Q (2012) High-pressure and high-temperature Raman spectroscopic study of hydrous wadsleyite (β-Mg2SiO4). Phys Chem Miner 39:57–64

    Article  Google Scholar 

  • Yang Y, Wang Z, Smyth JR, Liu J, **a Q (2015) Water effects on the anharmonic properties of forsterite. Am Mineral 100:2185–2190

    Article  Google Scholar 

  • Ye Y, Smyth JR, Jacobsen SD, Panero WR, Brown DA, Katsura T, Chang Y-Y, Townsend JP, Dera P, Tkachev S, Unterborn C, Liu Z, Goujon C (2013) Crystal structure, Raman and FTIR spectroscopy, and equations of state of OH-bearing MgSiO3 akimotoite. Contrib Mineral Petrol 166:1375–1388

    Article  Google Scholar 

  • Ye Y, Jacobsen SD, Mao Z, Duffy TS, Hirner SM, Smyth JR (2015) Crystal structure, thermal expansivity, and elasticity of OH-chondrodite: trends among dense hydrous magnesium silicate. Contrib Mineral Petrol 169:43

    Article  Google Scholar 

  • Zucker R, Shim S-H (2009) In situ Raman spectroscopy of MgSiO3 enstatite up to 1550 K. Am Mineral 94:1638–1646

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant no. 2016YFC0600204), and the National Natural Science Foundation of China (Grant nos. 41590621 and 41672041). Raman spectra were measured at the center of Physics Experiment Teaching, University of Science and Technology of China, while XRD and FTIR measurements were conducted at the Micro-FTIR Laboratory in the Department of Earth Sciences, Institute of Geology and Geophysics, Zhejiang University. We acknowledge Dr. Zhilei Sui and ** Wang

Authors

Corresponding author

Correspondence to Yu Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3.

Table 2 Variation of the unit-cell parameters of serandite with temperature, as well as the principal axes for thermal expansion, which are normalized to those at 300 K
Table 3 The vibrational modes for serandite (vi) at ambient condition, as compared with those for pectolite (numbers in italics below), the temperature-dependence of the modes (∂vi/∂T)P and the isobaric mode Grüneisen parameters (γiT)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Li, L., Smyth, J.R. et al. High-temperature X-ray diffraction, Raman and IR spectroscopy on serandite. Phys Chem Minerals 46, 705–715 (2019). https://doi.org/10.1007/s00269-019-01032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-019-01032-2

Keywords

Navigation