Log in

The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure (\({\text{R}}\bar{3}{\text{c}}\)) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K′ = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton

    Google Scholar 

  • Angel JR, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr Cryst Mat 229:405–419

    Google Scholar 

  • Badro J, Brodholt JP, Piet H, Siebert J, Ryerson FJ (2015) Core formation and core composition from coupled geochemical and geophysical constraints. Proc Natl Acad Sci 112(40):12310–12314

    Article  Google Scholar 

  • Barton IF, Yang H, Barton MD (2014) The mineralogy, geochemistry, and metallurgy of cobalt in the rhombohedral carbonates. Can Mineral 52:653–670

    Article  Google Scholar 

  • Boulard E, Gloter A, Corgne A, Antonangeli D, Auzende AL, Perrillat JP, Guyot F, Fiquet G (2011) New host for carbon in deep Earth. PNAS 108:5184–5187

    Article  Google Scholar 

  • Boulard E, Pan D, Galli G, Liu Z, Mao W (2014) Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat Commun. doi:10.1038/ncomms7311

    Google Scholar 

  • Boulard E, Goncharov AF, Blanchard M, Mao WL (2015) Pressure-induced phase transition in MnCO3 and its implications on the deep carbon cycle. J Geophys Res Solid Earth. doi:10.1002/2015JB011901

    Google Scholar 

  • Bridgman PW (1939) The high pressure behavior of miscellaneous minerals. Am J Sci 237:7–18

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Carr MH, Turekian KK (1960) The geochemistry of cobalt. Geochim Cosmochim Acta 23:9–60

    Article  Google Scholar 

  • Cerantola V, McCammon C, Kupenko I, Kantor I, Marini C, Wilke M, Ismailova L, Solopova N, Chumakov AI, Pascarelli S, Dubrovinsky L (2015) High-pressure spectroscopic study of siderite (FeCO3) with focus on spin crossover. Am Mineral 100:2670–2681

    Article  Google Scholar 

  • Effenberger H, Mereiter K, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Z Kristallogr 156:233–243

    Google Scholar 

  • Farfan GA, Boulard E, Wang S, Mao WL (2013) Bonding and electronic changes in rhodochrosite at high pressure. Am Mineral 98:1817–1823

    Article  Google Scholar 

  • Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849–854

    Article  Google Scholar 

  • Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. PNAS 104:9182–9186

    Article  Google Scholar 

  • Fiquet G, Guyot F, Itie JP (1994) High-pressure X-ray diffraction study of carbonates—MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79:15–23

    Google Scholar 

  • French BM (1971) Stability relations of siderite (FeCO3) in the system Fe–C–O. Am J Sci 27:37–78

    Article  Google Scholar 

  • Frost DJ, Poe BT, Tronnes RG, Liebske C, Duba A, Rubie DC (2004) A new large-volume multianvil system. Phys Earth Planet Inter 143–144:507–514

    Article  Google Scholar 

  • Gao J, Zhu F, Lai XJ, Huang R, Qin S, Chen DL, Liu J, Zheng LR, Wu X (2014) Compressibility of natural smithsonite ZnCO3 up to 50 GPa. High Press Res 34:89–99

    Article  Google Scholar 

  • Goldsmith JR, Northrop DA (1965) Subsolidus phase relations in the systems CaCO3–MgCO3–CoCO3 and CaCO3–MgCO3–NiCO3. J Geol 73:817–829

    Article  Google Scholar 

  • Gonzalez-Platas J, Alvaro M, Nestola F, Angel RJ (2016) EosFit7-GUI: a new GUI tool for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382

    Article  Google Scholar 

  • Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63

    Article  Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Wänke H (1979) The abundances of major, minor and trace elements in the earth’s mantle as derived from primitive ultramafic rocks. Proc Lunar Planet Sci Conf 10:2031–2050

    Google Scholar 

  • Kantor I, Prakapenka V, Kantor A, Dera P, Kurnosov A, Sinogeikin S, Dubrovinskaia N, Dubrovinsky L (2012) BX90: a new diamond anvil cell design for X-ray diffraction and optical measurements. Rev Sci Instrum. doi:10.1063/1.4768541

    Google Scholar 

  • Katsura T, Tsuchida Y, Ito E, Yagi T, Utsumi W, Akimoto S (1991) Stability of magnesite under the lower mantle conditions. Proc Japan Acad Ser B 67:57–60

    Article  Google Scholar 

  • Kupenko I, Dubrovinsky L, Dubrovinskaia N, McCammon C, Glazyrin K, Bykova E, Boffa-Ballaran T, Sinmyo R, Chumakov A, Potapkin V, Kantor A, Rüffer R, Hanfland M, Crichton W, Merlini M (2012) Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum. doi:10.1063/1.4772458

    Google Scholar 

  • Kurnosov A, Kantor I, Boffa-Ballaran T, Lindhardt S, Dubrovisnky L, Kuznetsov A, Zehnder BH (2008) A novel gas-loading system for mechanically closing of various types of diamond anvil cells. Rev Sci Instrum. doi:10.1063/1.2902506

    Google Scholar 

  • Larson AC, von Dreele RB (1985) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR B6-748

  • Lavina B, Dera P, Downs RT, Prakapenka V, Rivers M, Sutton S, Nicol M (2009) Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. GRL. doi:10.1029/2009GL039652

    Google Scholar 

  • Lavina B, Dera P, Downs RT, Tschauner O, Yang W, Shebanova O, Shen G (2010a) Effect of dilution on the spin pairing transition in rhombohedral carbonates. High Press Res 30:224–229

    Article  Google Scholar 

  • Lavina B, Dera P, Downs RT, Yang W, Sinogeikin S, Meng Y, Shenand G, Schiferl D (2010b) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys Rev B. doi:10.1103/PhysRevB.82.064110

    Google Scholar 

  • Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591

    Article  Google Scholar 

  • Liu J, Lin J, Prakapenka VB (2015) High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci Rep. doi:10.1038/srep07640

    Google Scholar 

  • Liu J, Caracas R, Fan D, Bobocioiu E, Zhang D, Mao WL (2016) High-pressure compressibility and vibrational properties of (Ca, Mn)CO3. Am Min 101:2723–2730

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure Gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–7676

    Article  Google Scholar 

  • Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. GRL. doi:10.1029/2011GL049519

    Google Scholar 

  • Mattila A, Rylkkänen T, Rueff JP, Huotari S, Vankó G, Hanfland M, Lehtinen M, Hämäläinen K (2007) Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy. J Phys Condens Matter. doi:10.1088/0953-8984/19/38/386206

    Google Scholar 

  • Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012a) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 109:13509–13514

    Article  Google Scholar 

  • Merlini M, Hanfland M, Crichton WA (2012b) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. EPSL 333–334:265–271

    Article  Google Scholar 

  • Merlini M, Hanfland M, Gemmi M (2015) The MnCO3-II high-pressure polymorph of rhodochrosite. Am Mineral 100:2625–2629

    Article  Google Scholar 

  • Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski LA, Parise JB, Lee Y, Dubrovinsky L, Depmeier W (2010) High-pressure behavior of otavite (CdCO3). J Alloys Compd 508:251–257

    Article  Google Scholar 

  • Ono S (2007) High-pressure phase transformation in MnCO3: a synchrotron XRD study. Mineral Mag 71:105–111

    Article  Google Scholar 

  • Pertlik F (1986) Structures of hydrothermally synthesized cobalt (II) carbonate and nickel (II) carbonate. Acta Cryst C 42:4–5

    Article  Google Scholar 

  • Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. Rev Mineral 11:1–47

    Google Scholar 

  • Rutt HN, Nicola JH (1974) Raman spectra of carbonates of calcite type. J Phys C Solid State Phys 7:4522–4528

    Article  Google Scholar 

  • Santillán J, Williams Q (2004) A high-pressure and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2—dolomite. Phys Earth Planet Inter 143–144:291–304

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  • Shi W, Fleet M, Shieh SR (2012) High-pressure phase transitions in Ca-Mn carbonates (Ca, Mn)CO3 studied by Raman spectroscopy. Am Mineral 97:999–1001

    Article  Google Scholar 

  • Suito K, Namba J, Horikawa T, Taniguchi Y, Sakurai N, Kobayashi M, Onodera A, Shimomura O, Kikegawa T (2001) Phase relations of CaCO3 at high pressure and high temperature. Am Mineral 86:997–1002

    Article  Google Scholar 

  • Taran MN, Langer K, Koch-Mueller M (2008) Pressure dependence of color of natural uvarovite: the barochromic effect. Phys Chem Miner 35:175–177

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–182

    Article  Google Scholar 

  • Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. Rev Mineral 11:265–299

    Google Scholar 

  • Vizgirda J, Ahrens TJ (1982) Shock compression of aragonite and implications for the equation of states of carbonates. J Geophys Res 87:4747–4758

    Article  Google Scholar 

  • Zhang J, Reeder RJ (1999) Comparative compressibilities of calcite-structure carbonates: deviations from empirical relations. Am Mineral 84:861–870

    Article  Google Scholar 

Download references

Acknowledgements

We thank the European Synchrotron Radiation Facility for provision of synchrotron radiation (ID09A) and Michael Hanfland for additional technical assistance. We also thank Tiziana Boffa-Ballaran for help with data analysis software and Alexander Kurnosov for the gas loading of diamond anvil cells. The project was supported by funds from the German Science Foundation (DFG) through the CarboPaT Research Unit FOR2125 (Mc3/20, Du393/9), the German Federal Ministry for Education (BMBF), and the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella Chariton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chariton, S., Cerantola, V., Ismailova, L. et al. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study. Phys Chem Minerals 45, 59–68 (2018). https://doi.org/10.1007/s00269-017-0902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-017-0902-5

Keywords

Navigation