Log in

Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Pyroxenes are important minerals in Earth’s upper mantle and subducting plate. Here, we report results of high-pressure single-crystal X-ray diffraction and Raman spectroscopy experiments conducted on natural Ca, Fe pyroxene hedenbergite up to ~33 GPa in diamond anvil cell. Unit cell parameters a, b, c, β and V, as well as bond lengths of hedenbergite are reported within the studied pressure range. Cell parameters exhibit continuous decrease on compression. Axial compressibilities of a, b and c are calculated to be 1.7(2), 4.9(5) and 2.13(9) × 10−3 GPa−1, respectively. Bulk modulus and its pressure derivative are determined to be 131(4) GPa and 3.8(3) by fitting third-order Birch–Murnaghan equation of state. Compression mechanism is dominated by polyhedral and bond compression trends typical of clinopyroxenes. In general, shorter bonds show lower compressibility, and SiO4, the smallest polyhedron, shows the lowest compressibility. Angle and elongation distortions are reported for the three types of polyhedra at high pressure. Thirteen vibrational modes are observed with Raman spectroscopy up to ~33 GPa. All observed mode frequencies increase as pressure increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bina CR (2013) Mineralogy: garnet goes hungry. Nat Geosci 6(5):335–336

    Article  Google Scholar 

  • Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Miner 66(1–2):1–50

    Google Scholar 

  • Cameron M, Sueno S, Prewitt C, Papike J (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Miner 58:594–618

    Google Scholar 

  • Chermak JA, Rimstidt JD (1989) Estimating the thermodynamic properties (Delta G of and Delta H of) of silicate minerals at 298 K from the sum of polyhedral contributions. Am Miner 74(9–10):1023–1031

    Google Scholar 

  • Dera P, Finkelstein GJ, Duffy TS, Downs RT, Meng Y, Prakapenka V, Tkachev S (2013a) Metastable high-pressure transformations of orthoferrosilite Fs82. Phys Earth Planet Inter 221:15–21

    Article  Google Scholar 

  • Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013b) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484

    Article  Google Scholar 

  • Finkelstein GJ, Dera PK, Duffy TS (2014) Phase transitions in orthopyroxene (En90) to 49 GPa from single-crystal X-ray diffraction. Phys Earth Planet Inter (in press)

  • Gatta GD, Ballaran TB, Iezzi G (2005) High-pressure X-ray and Raman study of a ferrian magnesian spodumene. Phys Chem Miner 32(2):132–139

    Article  Google Scholar 

  • Hazen RM, Downs RT (2000) High-temperature and high-pressure crystal chemistry. Mineralogical Society of America, Blacksburg

    Google Scholar 

  • Huang E, Chen CH, Huang T, Lin EH, Xu JA (2000) Raman spectroscopic characteristics of Mg–Fe–Ca pyroxenes. Am Miner 85(3–4):473–479

    Google Scholar 

  • Ita J, Stixrude L (1992) Petrology, elasticity, and composition of the mantle transition zone. J Geophys Res 97(B5):6849–6866

    Article  Google Scholar 

  • Jiang G, Zhao D, Zhang G (2008) Seismic evidence for a metastable olivine wedge in the subducting Pacific slab under Japan Sea. Earth Planet Sci Lett 270(3):300–307

    Article  Google Scholar 

  • Jiang G, Zhao D, Zhang G (2015) Detection of metastable olivine wedge in the western Pacific slab and its geodynamic implications. Phys Earth Planet Inter 238:1–7

    Article  Google Scholar 

  • Kandelin J, Weidner DJ (1988) Elastic properties of hedenbergite. J Geophys Res (1978–2012) 93(B2):1063–1072

    Article  Google Scholar 

  • Kaneshima S, Okamoto T, Takenaka H (2007) Evidence for a metastable olivine wedge inside the subducted Mariana slab. Earth Planet Sci Lett 258(1):219–227

    Article  Google Scholar 

  • Kim Y-H, Ming LC, Manghnani MH (1989) A study of phase transformation in hedenbergite to 40 GPa at ∼1200 °C. Phys Chem Miner 16(8):757–762

    Article  Google Scholar 

  • Kim Y-H, Ming L, Manghnani M, Ko J (1991) Phase transformation studies on a synthetic hedenbergite up to 26 GPa at 1200 °C. Phys Chem Miner 17(6):540–544

    Article  Google Scholar 

  • Krot AN, Brearley AJ, Petaev MI, Kallemeyn GW, Sears DW, Benoit PH, Hutcheon ID, Zolensky ME, Keil K (2000) Evidence for low-temperature growth of fayalite and hedenbergite in MacAlpine Hills 88107, an ungrouped carbonaceous chondrite related to the CM–CO clan. Meteorit Planet Sci 35(6):1365–1386

    Article  Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676

    Article  Google Scholar 

  • Meinert LD (1992) Skarns and skarn deposits. Geosci Canada 19(4):145–162

    Google Scholar 

  • Nishi M, Kato T, Kubo T, Kikegawa T (2008) Survival of pyropic garnet in subducting plates. Phys Earth Planet Inter 170(3–4):274–280

    Article  Google Scholar 

  • Nishi M, Kubo T, Ohfuji H, Kato T, Nishihara Y, Irifune T (2013) Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth Planet Sci Lett 361:44–49

    Article  Google Scholar 

  • Plonka AM, Dera P, Irmen P, Rivers ML, Ehm L, Parise JB (2012) β-Diopside, a new ultrahigh-pressure polymorph of CaMgSi2O6with six-coordinated silicon. Geophys Res Lett 39(24):L24307

    Google Scholar 

  • Ringwood AE (1967) The pyroxene-garnet transformation in the earth’s mantle. Earth Planet Sci Lett 2(3):255–263

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill Inc.

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J Geol 90(6):611–643

    Article  Google Scholar 

  • Rivers ML, Prakapenka VB, Kubo A, Pullins C, Hall CM, Jacobsen SD (2008) The COMPRES/GSECARS gas loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292

    Article  Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172(3983):567–570

    Article  Google Scholar 

  • Rutstein M, White W (1971) Vibrational spectra of high-calcium pyroxenes and pyroxenoids. Am Miner 56(5–6):877

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Van Hinsberg V, Vriend S, Schumacher J (2005a) A new method to calculate end-member thermodynamic properties of minerals from their constituent polyhedra I: enthalpy, entropy and molar volume. J Metamorph Geol 23(3):165–179

    Article  Google Scholar 

  • Van Hinsberg V, Vriend S, Schumacher J (2005b) A new method to calculate end-member thermodynamic properties of minerals from their constituent polyhedra II: heat capacity, compressibility and thermal expansion. J Metamorph Geol 23(8):681–693

    Article  Google Scholar 

  • Van Mierlo W, Langenhorst F, Frost D, Rubie D (2013) Stagnation of subducting slabs in the transition zone due to slow diffusion in majoritic garnet. Nat Geosci 6(5):400–403

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Miner Petrol 129(2–3):166–181

    Article  Google Scholar 

  • Zhang L, Ahsbahs H, Turk P-G, Hafner SS (1990) A pressure induced phase transition in pyroxene. High Press Sci Technol 5(1-6):732–734

    Google Scholar 

  • Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Miner 82:245–258

    Google Scholar 

  • Zhang L, Stanek J, Hafner SS, Ashbahs H, Grunsteudel HF, Metge J, Ruffer R (1999) 57Fe nuclear forward scattering of synchrotron radiation in hedenbergite CaFeSi2O6 at hydrostatic pressures up to 68 GPa. Am Miner 84:447–453

    Google Scholar 

  • Zhang JS, Dera P, Bass JD (2012) A new high-pressure phase transition in natural Fe-bearing orthoenstatite. Am Miner 97(7):1070–1074

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Science Foundation Division of Earth Sciences Geophysics Grant No. 1344942. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), and Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-1128799) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We would also like to thank Carnegie-DOE Alliance Center for support through Academic Partner subcontract to PD and Prof. R. T. Downs at the University of Arizona for kindly providing the samples from RRUFF collections. We would like to thank the two reviewers, Diego Gatta and Jennifer Kung for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Dera, P. & Zhuravlev, K. Single-crystal diffraction and Raman spectroscopy of hedenbergite up to 33 GPa. Phys Chem Minerals 42, 595–608 (2015). https://doi.org/10.1007/s00269-015-0747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0747-8

Keywords

Navigation