Polymeric Nanocomposites for Cancer-Targeted Drug Delivery

  • Chapter
  • First Online:
Polymeric and Natural Composites

Abstract

Cancer treatment has been a challenge for the medical science throughout the years. The conventional therapies present several limitations and drawbacks; thus, there is a necessity for new therapeutical approaches. Nanosystems based on polymeric nanocomposites have been described as promising carriers for efficient drug delivery. These systems enhance drug stability in biological fluids providing sustained and controlled release and when biofunctionalized with ligands attached to their shells they can target the treatment specifically to cancer cells. In this chapter, our main interest will be on polymeric nanocomposites for cancer-targeted drug delivery, their efficacy and impact on cancer therapy and multiscale molecular simulation studies for nanostructured polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

α-CD:

Α-cyclodextrin

ADCs:

Antibody-drug conjugates

Ag:

Silver

ALK:

Anaplastic lymphoma kinase

AuNR:

Gold nanorod

BBB:

Blood brain barrier

BD:

Brownian dynamics

BRAF:

V-raf murine sarcoma viral oncogene homolog B1

BRCA:

Breast cancer gene

BRD4:

Bromodomain containing 4

BTB:

Brain tumor barrier

CDK4/6:

Cyclin-dependent kinase

CDK7:

Cyclin-dependent kinase 7

CS:

Chitosan

CSCs:

Cancer stem cells

CT:

Chemotherapy

CTS:

Chondroitin sulphate

DDFT:

Dynamic density functional theory

DOX:

Doxorubicin

DPD:

Dissipative particle dynamics

EGFR:

Epidermal growth factor receptor

FEM:

Finite element method

FDM:

Finite difference method

FVM:

Finite volume method

GO:

Graphene-oxide

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDIs:

Histone deacetylase inhibitors

HER2:

Human epidermal growth factor receptor 2

IGF-1:

Insulin-like growth factor-1

IONPs:

Iron oxide NPs

LB:

Lattice Boltzmann

LOI:

Loss of imprinting

mTOR:

Mammalian target of rapamycin

MET:

Hepatocyte growth factor receptor

MD:

Molecular dynamics

MC:

Monte Carlo

MTX-PEG:

Methotrexate-PEG

NIR:

Near-infrared radiation

NK:

Natural killer

NP:

Nanoparticle

NSCLC:

Non-small cell lung carcinoma

NTRK:

Neurotrophic receptor tyrosine kinase

PAA:

Poly (acrylic acid)

PARP:

Poly (ADP-ribose) polymerase

PCL:

Polycaprolactone

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed cell death protein 1-ligand

PDMS:

Poly(N-isopropylacrylamide)-metal NPs

PEG:

Poly (ethyleneglycol)

PEI:

Poly(ethylene imine)

PGA:

Poly (glutamic acid)

PI3K:

Phosphatidylinositol 3-kinase

PLGA:

Poly (lactic-co-glycolic acid)

PLLA:

Poly-l-lactic acid

PMMA:

Poly (methyl methacrylate),

pNIPAM:

Poly(N-isopropylacrylamide)

PS:

Polystyrene

PTT:

Photothermal therapy

PTX:

Paclitaxel

PU:

Polyurethane

PVA:

Polyvinyl alcohol

PVDF:

Polyvinylidene fluoride

QM:

Quantum mechanics

RGD peptide:

Arginylglycylaspartic

ROS:

Reactive oxygen species

RT:

Radiotherapy

SEs:

Super-enhancers

SHH:

Sonic hedgehog signalling molecule

TDGL:

Time-dependent Ginzburg–Landau

VEGF:

Vascular endothelial growth factor

WS2-NT-CM-PEI:

Tungsten disulphide nanotubes-ceric ammonium nitrate-PEI

References

  1. Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330–1334

    Article  Google Scholar 

  2. Siddiqui IA, Sanna V, Ahmad N, Sechi M, Mukhtar H (2015) Resveratrol nanoformulation for cancer prevention and therapy. Ann N Y Acad Sci 1348(1):20–31

    Article  Google Scholar 

  3. Rita M, Lorena T (2016) Advances on Magnetic Nanocarriers Based on Natural Polymers. Curr Pharm Des 22(22):3353–3363

    Article  Google Scholar 

  4. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99

    Article  Google Scholar 

  5. Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A et al (2017) New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther 24(6):233–243

    Article  Google Scholar 

  6. Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53

    Article  Google Scholar 

  7. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 153(3):198–205

    Article  Google Scholar 

  8. Feldman D. Polymers and Polymer Nanocomposites for Cancer Therapy. Applied Sciences. 2019;9(18)

    Google Scholar 

  9. Kan-Dapaah K, Rahbar N, Soboyejo W (2017) Polymeric composite devices for localized treatment of early-stage breast cancer. PLoS ONE 12(2):

    Article  Google Scholar 

  10. Mishra DK, Yadav KS, Prabhakar B, Gaud RS. Nanocomposite for cancer targeted drug delivery. Applications of Nanocomposite Materials in Drug Delivery2018. p. 323–37

    Google Scholar 

  11. Kaurav H, Manchanda S, Dua K, Kapoor DN (2018) Nanocomposites in Controlled & Targeted Drug Delivery Systems. Nano Hybrids and Composites. 20:27–45

    Article  Google Scholar 

  12. Senapati S, Mahanta AK, Kumar S, Maiti P (2018) Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 3:7

    Article  Google Scholar 

  13. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M et al (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144(8):1941–1953

    Article  Google Scholar 

  14. Institute NC. What is Cancer? 2015 [Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/cancer

  15. Parsa N (2012) Environmental factors inducing human cancers. Iran J Public Health. 41(11):1–9

    Google Scholar 

  16. Wu S, Zhu W, Thompson P, Hannun YA (2018) Evaluating intrinsic and non-intrinsic cancer risk factors. Nature Communications. 9(1):3490

    Article  Google Scholar 

  17. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  Google Scholar 

  18. GarcĂ­a-Esquinas E, JimĂ©nez A, Pastor-Barriuso R, Jones MR, Perez-Gomez B, Navas-Acien A et al (2018) Impact of declining exposure to secondhand tobacco smoke in public places to decreasing smoking-related cancer mortality in the US population. Environ Int 117:260–267

    Article  Google Scholar 

  19. Lagiou A, Lagiou P (2017) Tobacco smoking and breast cancer: a life course approach. Eur J Epidemiol 32(8):631–634

    Article  Google Scholar 

  20. Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA (2016) Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J Clin Oncol 34(35):4270–4276

    Article  Google Scholar 

  21. Hopkins BD, Goncalves MD, Cantley LC (2016) Obesity and Cancer Mechanisms: Cancer Metabolism. J Clin Oncol 34(35):4277–4283

    Article  Google Scholar 

  22. Lennon H, Sperrin M, Badrick E, Renehan AG (2016) The Obesity Paradox in Cancer: a Review. Curr Oncol Rep. 18(9):56

    Article  Google Scholar 

  23. Seitz HK, Stickel F (2007) Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7(8):599–612

    Article  Google Scholar 

  24. Boffetta P, Hashibe M (2006) Alcohol and cancer. Lancet Oncol. 7(2):149–156

    Article  Google Scholar 

  25. Wang LH, Wu CF, Rajasekaran N, Shin YK (2018) Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem 51(6):2647–2693

    Article  Google Scholar 

  26. PeltomĂ€ki P (2012) Mutations and epimutations in the origin of cancer. Exp Cell Res 318(4):299–310

    Article  Google Scholar 

  27. Sherr CJ (2004) Principles of Tumor Suppression. Cell 116(2):235–246

    Article  Google Scholar 

  28. Cross M, Dexter TM (1991) Growth factors in development, transformation, and tumorigenesis. Cell 64(2):271–280

    Article  Google Scholar 

  29. Anderson MW, Reynolds SH, You M, Maronpot RM (1992) Role of proto-oncogene activation in carcinogenesis. Environ Health Perspect 98:13–24

    Article  Google Scholar 

  30. Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD (2018) Tumor-Treating Fields: A Fourth Modality in Cancer Treatment. Clin Cancer Res 24(2):266–275

    Article  Google Scholar 

  31. Baudino TA (2015) Targeted Cancer Therapy: The Next Generation of Cancer Treatment. Curr Drug Discov Technol 12(1):3–20

    Article  Google Scholar 

  32. Oun R, Moussa YE, Wheate NJ (2018) The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans 47(19):6645–6653

    Article  Google Scholar 

  33. Partridge AH, Burstein HJ, Winer EP (2001) Side Effects of Chemotherapy and Combined Chemohormonal Therapy in Women With Early-Stage Breast Cancer. JNCI Monographs. 2001(30):135–142

    Article  Google Scholar 

  34. Society AC. Chemotherapy Side Effects 2019 [Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/chemotherapy-side-effects.html

  35. Zhang HH, Guo XL (2016) Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother Pharmacol 78(1):13–26

    Article  Google Scholar 

  36. Carter BW, Bhosale PR, Yang WT (2018) Immunotherapy and the role of imaging. Cancer 124(14):2906–2922

    Article  Google Scholar 

  37. Riley RS, June CH, Langer R, Mitchell MJ (2019) Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 18(3):175–196

    Article  Google Scholar 

  38. Sanmamed MF, Chen L (2018) A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell 175(2):313–326

    Article  Google Scholar 

  39. Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol 834:188–196

    Article  Google Scholar 

  40. Nwibo D, Okolo C, Nwibo M (2015) Small Molecule Drugs; Down but Not Out: A Future for Medical Research and Therapeutics. IOSR Journal of Dental and Medical Sciences. 14:70–77

    Google Scholar 

  41. Joo WD, Visintin I, Mor G (2013) Targeted cancer therapy–are the days of systemic chemotherapy numbered? Maturitas. 76(4):308–314

    Article  Google Scholar 

  42. Valentino F, Borra G, Allione P, Rossi L (2018) Emerging targets in advanced non-small-cell lung cancer. Future Oncol. 14(13s):61–72

    Article  Google Scholar 

  43. Tray N, Taff J, Adams S (2019) Therapeutic landscape of metaplastic breast cancer. Cancer Treat Rev 79:

    Article  Google Scholar 

  44. Das S, Ciombor KK, Haraldsdottir S, Goldberg RM. Promising New Agents for Colorectal Cancer. Curr Treat Options Oncol. 2018;19(6):29-

    Google Scholar 

  45. Amaria RN, Menzies AM, Burton EM, Scolyer RA, Tetzlaff MT, Antdbacka R et al (2019) Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium. Lancet Oncol. 20(7):e378–e389

    Article  Google Scholar 

  46. de Castro Sant’ Anna C, Junior AGF, Soares P, Tuji F, Paschoal E, Chaves LC, et al. Molecular biology as a tool for the treatment of cancer. Clin Exp Med. 2018;18(4):457–64

    Google Scholar 

  47. Ke X, Shen L (2017) Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine. 1(2):69–75

    Article  Google Scholar 

  48. De Laurentiis M, Cancello G, Zinno L, Montagna E, Malorni L, Esposito A, et al. Targeting HER2 as a therapeutic strategy for breast cancer: a paradigmatic shift of drug development in oncology. Annals of Oncology. 2005;16:iv7-iv13

    Google Scholar 

  49. Manzano A, Ocaña A. Antibody-Drug Conjugates: A Promising Novel Therapy for the Treatment of Ovarian Cancer. Cancers (Basel). 2020;12(8)

    Google Scholar 

  50. Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol. 2020;10:1182-

    Google Scholar 

  51. Montemagno C, PagĂšs G. Resistance to Anti-angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Front Cell Dev Biol. 2020;8:584-

    Google Scholar 

  52. Huang TT, Lampert EJ, Coots C, Lee JM (2020) Targeting the PI3K pathway and DNA damage response as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 86:

    Article  Google Scholar 

  53. Guo L, Wei R, Lin Y, Kwok HF. Clinical and Recent Patents Applications of PD-1/PD-L1 Targeting Immunotherapy in Cancer Treatment-Current Progress, Strategy, and Future Perspective. Front Immunol. 2020;11:1508-

    Google Scholar 

  54. Akbar Samadani A, Keymoradzdeh A, Shams S, Soleymanpour A, Elham Norollahi S, Vahidi S, et al. Mechanisms of cancer stem cell therapy. Clinica Chimica Acta. 2020

    Google Scholar 

  55. Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. Journal of Pharmacy and Pharmacology.n/a(n/a)

    Google Scholar 

  56. Zheng C, Liu M, Fan H (2020) Targeting complexes of super-enhancers is a promising strategy for cancer therapy (Review). Oncol Lett. 20(3):2557–2566

    Article  Google Scholar 

  57. Alatrash G, Daver N, Mittendorf EA (2016) Targeting Immune Checkpoints in Hematologic Malignancies. Pharmacol Rev 68(4):1014–1025

    Article  Google Scholar 

  58. Yeon M, Kim Y, Jung HS, Jeoung D. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma. Front Cell Dev Biol. 2020;8:486-

    Google Scholar 

  59. Verza FA, Das U, Fachin AL, Dimmock JR, Marins M (2020) Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers. 12(6):1664

    Article  Google Scholar 

  60. Tu B, Zhang M, Liu T, Huang Y. Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy. Front Cell Dev Biol. 2020;8:400-

    Google Scholar 

  61. Society AC. Targeted Therapy for Breast Cancer 2019 [Available from: https://www.cancer.org/cancer/breast-cancer/treatment/targeted-therapy-for-breast-cancer.html

  62. Society AC. Targeted Therapy for Colorectal Cancer 2020 [Available from: https://www.cancer.org/cancer/colon-rectal-cancer/treating/targeted-therapy.html

  63. Society AC. Targeted Drug Therapy for Non-Small Cell Lung Cancer 2019 Available from: https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/targeted-therapies.html

  64. Society AC. Targeted Therapy for Prostate Cancer 2019 [Available from: https://www.cancer.org/cancer/prostate-cancer/treating/targeted-therapy.html

  65. Society AC. Targeted Therapy for Basal and Squamous Cell Skin Cancers 2019 Available from: https://www.cancer.org/cancer/basal-and-squamous-cell-skin-cancer/treating/targeted-therapy.html

  66. Society AC. Targeted Therapy Drugs for Melanoma Skin Cancer 2019 [Available from: https://www.cancer.org/cancer/melanoma-skin-cancer/treating/targeted-therapy.html

  67. Chivrac F, Pollet E, Schmutz M, AvĂ©rous L (2008) New approach to elaborate exfoliated starch-based nanobiocomposites. Biomacromol 9(3):896–900

    Article  Google Scholar 

  68. Sothornvit R, Hong S-i, An DJ, Rhim J-W, editors (2010) Effect of clay content on the physical and antimicrobial properties of whey protein isolate/organo-clay composite films

    Google Scholar 

  69. Zhang ZL, Le Y, Wang JX, Chen JF (2011) Preparation of stable micron-sized crystalline irbesartan particles for the enhancement of dissolution rate. Drug Dev Ind Pharm 37(11):1357–1364

    Article  Google Scholar 

  70. Shinde S, Payghan S, D’souza J. Physiochemical assessment of pharmaceutical salt forms: A quality attribute. Int Res J Invent Pharm Sci. 2014;2:46–53

    Google Scholar 

  71. Yingchoncharoen P, Kalinowski DS, Richardson DR (2016) Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 68(3):701–787

    Article  Google Scholar 

  72. Cho K, Wang X, Nie S, Chen Z, Shin DM (2008) Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin Cancer Res 14(5):1310

    Article  Google Scholar 

  73. Enisa O-M, Anera K (2020) Nanocomposites: a brief review. Health and Technology. 10(1):51–59

    Article  Google Scholar 

  74. Mozumder MS, Mairpady A, Mourad AI (2017) Polymeric nanobiocomposites for biomedical applications. J Biomed Mater Res B Appl Biomater 105(5):1241–1259

    Article  Google Scholar 

  75. Feldman D. Polymer nanocomposites in medicine. 2016. p. 55–62

    Google Scholar 

  76. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J Compos Mater 40(17):1511–1575

    Article  Google Scholar 

  77. Nicole L, Laberty-Robert C, Rozes L, Sanchez C (2014) Hybrid materials science: a promised land for the integrative design of multifunctional materials. Nanoscale 6(12):6267–6292

    Article  Google Scholar 

  78. Gupta D, Singh D, Kothiyal NC, Saini AK, Singh VP, Pathania D (2015) Synthesis of chitosan-g-poly(acrylamide)/ZnS nanocomposite for controlled drug delivery and antimicrobial activity. Int J Biol Macromol 74:547–557

    Article  Google Scholar 

  79. Zou Y, Liang J, She Z, Kraatz HB. Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of E.coli K12. Talanta. 2019;193:15–22

    Google Scholar 

  80. Li X, **e C, **a H, Wang Z (2018) pH and Ultrasound Dual-Responsive Polydopamine-Coated Mesoporous Silica Nanoparticles for Controlled Drug Delivery. Langmuir 34(34):9974–9981

    Article  Google Scholar 

  81. Luo W, Cheng L, Yuan C, Wu Z, Yuan G, Hou M et al (2019) Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Int J Biol Macromol 134:469–479

    Article  Google Scholar 

  82. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  Google Scholar 

  83. Kong J, Yu Y, Pei X, Han C, Tan Y, Dong L (2017) Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. Int J Biol Macromol 102:1304–1311

    Article  Google Scholar 

  84. Sathya S, Murthy PS, Devi VG, Das A, Anandkumar B, Sathyaseelan VS et al (2019) Antibacterial and cytotoxic assessment of poly (methyl methacrylate) based hybrid nanocomposites. Mater Sci Eng C Mater Biol Appl. 100:886–896

    Article  Google Scholar 

  85. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC et al (2003) Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold. Biomaterials 24(16):2773–2778

    Article  Google Scholar 

  86. Mir M, Ahmed N, Rehman AU (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 159:217–231

    Article  Google Scholar 

  87. Huang H, Xu J, Wei K, Xu YJ, Choi CK, Zhu M et al (2016) Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers. Macromol Biosci 16(7):1019–1026

    Article  Google Scholar 

  88. Shanmugasundar S, Kannan N, Sundaravadivel E, Zsolt S, Mukunthan KS, Manokaran J et al (2019) Study on the inflammatory response of PMMA/polystyrene/silica nanocomposite membranes for drug delivery and dental applications. PLoS ONE 14(3):

    Article  Google Scholar 

  89. Arumugam R, Chinnadurai RK, Subramaniam BN, Devaraj B, Subramanium V, Sekhar SE et al (2018) Scalable novel PVDF based nanocomposite foam for direct blood contact and cardiac patch applications. J Mech Behav Biomed Mater 88:270–280

    Article  Google Scholar 

  90. Parsa P, Paydayesh A, Davachi SM (2019) Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int J Biol Macromol 121:1061–1069

    Article  Google Scholar 

  91. Bae HH, Cho MY, Hong JH, Poo H, Sung MH, Lim YT (2012) Bio-derived poly(gamma-glutamic acid) nanogels as controlled anticancer drug delivery carriers. J Microbiol Biotechnol 22(12):1782–1789

    Article  Google Scholar 

  92. Ahmadkhani L, Baghban A, Mohammadpoor S, Khalilov R, Akbarzadeh A, Kavetskyy T et al (2017) Synthesis and Evaluation of a Triblock Copolymer/ZnO Nanoparticles from Poly(Δ-caprolactone) and Poly(Acrylic Acid) as a Potential Drug Delivery Carrier. Drug Res (Stuttg). 67(4):228–238

    Article  Google Scholar 

  93. Zou Y, Li D, Shen M, Shi X (2019) Polyethylenimine-Based Nanogels for Biomedical Applications. Macromol Biosci 19(11):

    Article  Google Scholar 

  94. George A, Shah PA, Shrivastav PS (2019) Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 561:244–264

    Article  Google Scholar 

  95. Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biotechnol 67(6):735–745

    Article  Google Scholar 

  96. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  Google Scholar 

  97. MĂŒllner M (2019) Functional Natural and Synthetic Polymers. Macromol Rapid Commun 40(10):

    Article  Google Scholar 

  98. Tabasum S, Noreen A, Kanwal A, Zuber M, Anjum MN, Zia KM (2017) Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review. Int J Biol Macromol 98:748–776

    Article  Google Scholar 

  99. Mariani E, Lisignoli G, BorzĂŹ R, Pulsatelli L. Biomaterials: Foreign Bodies or Tuners for the Immune Response? International Journal of Molecular Sciences. 2019;20(3)

    Google Scholar 

  100. Feldman D. Polymers and polymer nanocomposites for cancer therapy. Applied Sciences (Switzerland). 2019;9(18): < xocs:firstpage xmlns:xocs = ”“/>

    Google Scholar 

  101. Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM et al (2018) Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 269:374–392

    Article  Google Scholar 

  102. Wang M, Wang D, Chen Q, Li C, Li Z, Lin J (2019) Recent Advances in Glucose-Oxidase-Based Nanocomposites for Tumor Therapy. Small 15(51):

    Article  Google Scholar 

  103. Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP (2019) Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology. 17(1):48

    Article  Google Scholar 

  104. Rahman M, Ahmad MZ, Ahmad J, Firdous J, Ahmad FJ, Mushtaq G et al (2015) Role of Graphene Nano-Composites in Cancer Therapy: Theranostic Applications, Metabolic Fate and Toxicity Issues. Curr Drug Metab 16(5):397–409

    Article  Google Scholar 

  105. Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M (2015) Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 7(4):509–533

    Article  Google Scholar 

  106. Yu X, Wang Z, Su Z, Wei G (2017) Design, fabrication, and biomedical applications of bioinspired peptide-inorganic nanomaterial hybrids. J Mater Chem B. 5(6):1130–1142

    Article  Google Scholar 

  107. Minelli C, Lowe SB, Stevens MM (2010) Engineering nanocomposite materials for cancer therapy. Small 6(21):2336–2357

    Article  Google Scholar 

  108. Qin YT, Peng H, He XW, Li WY, Zhang YK (2019) pH-Responsive Polymer-Stabilized ZIF-8 Nanocomposites for Fluorescence and Magnetic Resonance Dual-Modal Imaging-Guided Chemo-/Photodynamic Combinational Cancer Therapy. ACS Appl Mater Interfaces 11(37):34268–34281

    Article  Google Scholar 

  109. Levin T, Sade H, Binyamini RB, Pour M, Nachman I, Lellouche JP (2019) Tungsten disulfide-based nanocomposites for photothermal therapy. Beilstein J Nanotechnol. 10:811–822

    Article  Google Scholar 

  110. Dembereldorj U, Choi SY, Ganbold EO, Song NW, Kim D, Choo J et al (2014) Gold nanorod-assembled PEGylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem Photobiol 90(3):659–666

    Article  Google Scholar 

  111. Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M et al (2014) Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 35(12):3885–3894

    Article  Google Scholar 

  112. Tabatabaei Mirakabad FS, Akbarzadeh A, Milani M, Zarghami N, Taheri-Anganeh M, Zeighamian V et al (2016) A Comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif Cells Nanomed Biotechnol. 44(1):423–430

    Article  Google Scholar 

  113. Hai L, He D, He X, Wang K, Yang X, Liu J et al (2017) Facile fabrication of a resveratrol loaded phospholipid@reduced graphene oxide nanoassembly for targeted and near-infrared laser-triggered chemo/photothermal synergistic therapy of cancer in vivo. J Mater Chem B. 5(29):5783–5792

    Article  Google Scholar 

  114. Fang Y, Jiang Y, Zou Y, Meng F, Zhang J, Deng C et al (2017) Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(Δ-caprolactone) micelles. Acta Biomater 50:396–406

    Article  Google Scholar 

  115. Almajhdi FN, Fouad H, Khalil KA, Awad HM, Mohamed SH, Elsarnagawy T et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25(4):1045–1053

    Article  Google Scholar 

  116. Rzayev ZM, Salimi K, Bunyatova U, Acar S, Salamov B, Turk M (2016) Fabrication and characterization of PVA/ODA-MMT-poly(MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells. Mater Sci Eng C Mater Biol Appl. 61:257–268

    Article  Google Scholar 

  117. Irani M, Sadeghi GMM, Haririan I (2017) The sustained delivery of temozolomide from electrospun PCL-Diol-b-PU/gold nanocompsite nanofibers to treat glioblastoma tumors. Mater Sci Eng C Mater Biol Appl. 75:165–174

    Article  Google Scholar 

  118. Lin J, Li Y, Wu H, Yu F, Zhou S, **e L et al (2015) Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging. ACS Appl Mater Interfaces 7(22):11908–11920

    Article  Google Scholar 

  119. Wang K, Zhang Z, Lin L, Hao K, Chen J, Tian H et al (2019) Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Appl Mater Interfaces 11(43):39503–39512

    Article  Google Scholar 

  120. Xu Y, Zhao J, Zhang Z, Zhang J, Huang M, Wang S et al (2020) Preparation of electrospray ALG/PDA-PVP nanocomposites and their application in cancer therapy. Soft Matter 16(1):132–141

    Article  Google Scholar 

  121. Salahuddin N, Elbarbary AA, Alkabes HA (2017) Antibacterial and anticancer activity of loaded quinazolinone polypyrrole/chitosan silver chloride nanocomposite. International Journal of Polymeric Materials and Polymeric Biomaterials. 66(6):307–316

    Article  Google Scholar 

  122. Javid A, Ahmadian S, Saboury AA, Kalantar SM, Rezaei-Zarchi S, Shahzad S (2014) Biocompatible APTES–PEG Modified Magnetite Nanoparticles: Effective Carriers of Antineoplastic Agents to Ovarian Cancer. Appl Biochem Biotechnol 173(1):36–54

    Article  Google Scholar 

  123. Zarouni M, Salehi R, Akbarzadeh A, Samadi N, Davaran S, Ramezani F et al (2015) Biocompatible Polymer Coated Paramagnetic Nanoparticles for Doxorubicin Delivery: Synthesis and Anticancer Effects Against Human Breast Cancer Cells. International Journal of Polymeric Materials and Polymeric Biomaterials. 64(14):718–726

    Article  Google Scholar 

  124. Wang S, Zhao X, Wang S, Qian J, He S (2016) Biologically Inspired Polydopamine Capped Gold Nanorods for Drug Delivery and Light-Mediated Cancer Therapy. ACS Appl Mater Interfaces 8(37):24368–24384

    Article  Google Scholar 

  125. Lim E-K, Sajomsang W, Choi Y, Jang E, Lee H, Kang B et al (2013) Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale Res Lett 8:467

    Article  Google Scholar 

  126. Vivek R, Thangam R, Kumar SR, Rejeeth C, Sivasubramanian S, Vincent S et al (2016) HER2 Targeted Breast Cancer Therapy with Switchable “Off/On” Multifunctional “Smart” Magnetic Polymer Core-Shell Nanocomposites. ACS Appl Mater Interfaces 8(3):2262–2279

    Article  Google Scholar 

  127. Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X et al (2017) Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS Appl Mater Interfaces 9(24):20361–20375

    Article  Google Scholar 

  128. Mdlovu NV, Mavuso FA, Lin K-S, Chang T-W, Chen Y, Wang SSS et al (2019) Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Colloids Surf, A 562:361–369

    Article  Google Scholar 

  129. **ng Q, Li N, Jiao Y, Chen D, Xu J, Xu Q et al (2015) Near-infrared light-controlled drug release and cancer therapy with polymer-caged upconversion nanoparticles. RSC Advances. 5(7):5269–5276

    Article  Google Scholar 

  130. GhavamiNejad A, SamariKhalaj M, Aguilar LE, Park CH, Kim CS (2016) pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy. Scientific Reports. 6(1):33594

    Article  Google Scholar 

  131. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF et al (2013) Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 368(13):1199–1209

    Article  Google Scholar 

  132. Leong SP, Tseng WW (2014) Micrometastatic cancer cells in lymph nodes, bone marrow, and blood: Clinical significance and biologic implications. CA Cancer J Clin 64(3):195–206

    Article  Google Scholar 

  133. Liu M, Huang P, Wang W, Feng Z, Zhang J, Deng L et al (2019) An injectable nanocomposite hydrogel co-constructed with gold nanorods and paclitaxel-loaded nanoparticles for local chemo-photothermal synergetic cancer therapy. J Mater Chem B. 7(16):2667–2677

    Article  Google Scholar 

  134. Cacicedo ML, Islan GA, León IE, Álvarez VA, Chourpa I, Allard-Vannier E et al (2018) Bacterial cellulose hydrogel loaded with lipid nanoparticles for localized cancer treatment. Colloids Surf B Biointerfaces. 170:596–608

    Article  Google Scholar 

  135. Xue P, Sun L, Li Q, Zhang L, Xu Z, Li CM et al (2018) PEGylated magnetic Prussian blue nanoparticles asa multifunctional therapeutic agent for combined targeted photothermal ablation and pH-triggered chemotherapy of tumour cells. J Colloid Interface Sci 509:384–394

    Article  Google Scholar 

  136. Fan X, Yuan Z, Shou C, Fan G, Wang H, Gao F et al (2019) cRGD-Conjugated Fe(3)O(4)@PDA-DOX Multifunctional Nanocomposites for MRI and Antitumor Chemo-Photothermal Therapy. Int J Nanomedicine. 14:9631–9645

    Article  Google Scholar 

  137. Huang J, Zhong X, Wang L, Yang L, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics. 2(1):86–102

    Article  Google Scholar 

  138. Hachani R, Lowdell M, Birchall M, Thanh NTK (2013) Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale. 5(23):11362–11373

    Article  Google Scholar 

  139. Na HB, Song IC, Hyeon T (2009) Inorganic Nanoparticles for MRI Contrast Agents. Adv Mater 21(21):2133–2148

    Article  Google Scholar 

  140. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  Google Scholar 

  141. Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperthermia. 29(8):828–834

    Article  Google Scholar 

  142. Laurent S, Dutz S, HĂ€feli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166(1–2):8–23

    Article  Google Scholar 

  143. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today. 2(3):22–32

    Article  Google Scholar 

  144. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63(1–2):24–46

    Article  Google Scholar 

  145. Hervault A, Dunn AE, Lim M, Boyer C, Mott D, Maenosono S et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale. 8(24):12152–12161

    Article  Google Scholar 

  146. Laurini E, Marson D, Fermeglia M, Prici S (2019) In silico design of self-assembly nanostructured polymer systems by multiscale molecular modeling. Sci, Tech Innov. 6(3):1–10

    Article  Google Scholar 

  147. Steffens L, MorĂĄs AM, Arantes PR, Masterson K, Cao Z, Nugent M et al (2020) Electrospun PVA-Dacarbazine nanofibers as a novel nano brain-implant for treatment of glioblastoma: in silico and in vitro characterization. Eur J Pharm Sci 143:

    Article  Google Scholar 

  148. Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39(3):443–485

    Article  Google Scholar 

  149. Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337

    Article  Google Scholar 

  150. Lowe D, Chapman A, Cook S, Busfield J (2011) Micromechanical Models of Young’s Modulus of NR/Organoclay Nanocomposites. J Polym Sci, Part B: Polym Phys 49:1621–1627

    Article  Google Scholar 

  151. Mattausch H, Laske S, Đuretek I, Kreith J, Maier G, Holzer C (2013) Investigation of the influence of processing conditions on the thermal, rheological and mechanical behavior of polypropylene nanocomposites. Polym Eng Sci 53(5):1001–1010

    Article  Google Scholar 

  152. Decker JJ, Meyers KP, Paul DR, Schiraldi DA, Hiltner A, Nazarenko S (2015) Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer 61:42–54

    Article  Google Scholar 

  153. Gooneie A, Nazockdast H, Shahsavan F (2015) Effect of selective localization of carbon nanotubes in PA6 dispersed phase of PP/PA6 blends on the morphology evolution with time, part 1: Droplet deformation under simple shear flows. Polym Eng Sci 55(7):1504–1519

    Article  Google Scholar 

  154. Sepahvand R, Adeli M, Astinchap B, Kabiri R (2008) New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. J Nanopart Res 10:1309–1318

    Article  Google Scholar 

  155. Moniruzzaman M, Winey K. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules. 2006;39

    Google Scholar 

  156. Elliott JA (2011) Novel approaches to multiscale modelling in materials science. Int Mater Rev 56(4):207–225

    Article  Google Scholar 

  157. Zeng Q, Yu A, Lu M (2008) Multiscale modeling and simulation of polymer nanocomposites. Progress in Polymer Science - PROG POLYM SCI. 33:191–269

    Article  Google Scholar 

  158. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17(2):192–198

    Article  Google Scholar 

  159. Ayyaswamy PS, Muzykantov V, Eckmann DM, Radhakrishnan R. Nanocarrier Hydrodynamics and Binding in Targeted Drug Delivery: Challenges in Numerical Modeling and Experimental Validation. Journal of Nanotechnology in Engineering and Medicine. 2013;4(1)

    Google Scholar 

  160. Raabe D (2002) Challenges in Computational Materials Science. Adv Mater 14(9):639–650

    Article  Google Scholar 

  161. Kremer K, MĂŒller-Plathe F (2001) Multiscale Problems in Polymer Science: Simulation Approaches. MRS Bull 26(3):205–210

    Article  Google Scholar 

  162. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: Biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  Google Scholar 

  163. Peter C, Kremer K (2009) Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back. Soft Matter 5(22):4357–4366

    Article  Google Scholar 

  164. Sherwood P, Brooks BR, Sansom MSP (2008) Multiscale methods for macromolecular simulations. Curr Opin Struct Biol 18(5):630–640

    Article  Google Scholar 

  165. Gooneie A, Schuschnigg S, Holzer C. A Review of Multiscale Computational Methods in Polymeric Materials. Polymers (Basel) [Internet]. 2017 2017/01//; 9(1). Available from: http://europepmc.org/abstract/MED/30970697, https://doi.org/10.3390/polym9010016, https://europepmc.org/articles/PMC6432151, https://europepmc.org/articles/PMC6432151?pdf=render

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Steffens Reinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reinhardt, L.S. et al. (2022). Polymeric Nanocomposites for Cancer-Targeted Drug Delivery. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation