Log in

New nanocomposites containing metal nanoparticles, carbon nanotube and polymer

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Metal-carbon nanotube-graft-polymer (MCNT-g-P) nanocomposites were synthesized and characterized successfully. In this work, multiwall carbon nanotubes (MWCNT) were opened using HNO3/H2SO4 mixture and filled by metal nanoparticles such as silver nanoparticles through wet chemistry method. Then MWCNT containing metal nanoparticles were used as macroinitiator for ring opening polymerization of ε-caprolactone and MCNT-g-P nanocomposites were obtained. Length of grafted polymer arms onto the MWCNT was controlled using MWCNT/ε-caprolactone ratio. Structure and properties of nanocomposites were evaluated by TEM, DSC, TGA, and spectroscopy methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  • Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Top Appl Phys 80:391–425

    Article  CAS  Google Scholar 

  • Baibarac M, Baltog I, Lefrant S, Mevellec JY, Chauvet O (2003) Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 15:4149–4156

    Article  CAS  Google Scholar 

  • Baibarac M, Baltog I, Godon C, Lefrant S, Chauvet O (2004) Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42:3143–3152

    Article  CAS  Google Scholar 

  • Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes––the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  • Blake R, Gun’ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ, Generic A (2004) Organometallic approach toward ultra-strong carbon nanotube polymer composites. J Am Chem Soc 126:10226–10227

    Article  CAS  Google Scholar 

  • Cahill LS, Yao Z, Adronov A, Penner J, Moonoosawmy KR, Kruse P, Goward GR (2004) Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy. J Phys Chem B 108:11412–11418

    Article  CAS  Google Scholar 

  • Cao L, Chen H-Z, Li H-Y, Zhou H-B, Sun J-Z, Zhang X-B, Wang M (2003) Fabrication of rare-earth biphthalocyanine encapsulated by carbon nanotubes using a capillary filling method. Chem Mater 15:3247–3249

    Article  CAS  Google Scholar 

  • Chen Q, Xu R, Yu D (2006) Multiwalled carbon nanotube/polybenzoxazine nanocomposites: preparation, characterization and properties. Polymer 47:7711–7719

    Article  CAS  Google Scholar 

  • Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001) Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem Commun 1450–1451

  • Coleman JN, Cadek M, Blake R, Nicolosi V, Ryan KP, Belton C, Fonseca A, Nagy JB, Gun’ko YK, Blau WJ (2004) High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv Funct Mater 14:791–798

    Article  CAS  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of x-ray diffraction. New Jersey

  • Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–380

    Article  CAS  Google Scholar 

  • Do Nascimento GM, Corio P, Novickis RW, Temperini MLA, Dresselhaus MS (2005) Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites. J Polym Sci Part A 43:815–822

    Article  CAS  Google Scholar 

  • Dresselhaus M, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, properties and applications. Springer-Verlag, Berlin

    Google Scholar 

  • Dyke CA, Tour JM (2003a) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3:1215–1218

    Article  CAS  Google Scholar 

  • Dyke CA, Tour JM (2003b) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125:1156–1157

    Article  CAS  Google Scholar 

  • Gao C, ** YZ, Kong H, Whitby RLD, Acquah SFA, Chen GY, Qian H, Hartschuh A, Silva SRP, Henley S, Fearon P, Kroto HW, Walton DRM (2005) Polyurea-functionalized multiwalled carbon nanotubes: synthesis, morphology, and Raman spectroscopy. J Phys Chem B 109:11925–11932

    Article  CAS  Google Scholar 

  • Gao C, Li W, ** YZ, Kong H (2006) Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology 17:2882–2890

    Article  CAS  Google Scholar 

  • Guldi DM, Rahman GNA, Ramey J, Marcaccio M, Paolucci D, Paolucci F, Qin S, Ford WT, Balbinot D, Jux N, Tagmatarchis N, Prato M (2004) Donor–acceptor nanoensembles of soluble carbon nanotubes. Chem Commun 2034–2035

  • Guldi DM, Rahman GMA, Prato M, Jux N, Qin S, Ford W (2005) Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew Chem Int Ed 44:2015–2018

    Article  CAS  Google Scholar 

  • Hadjiev VG, Mitchell CA, Arepalli S, Bahr JL, Tour JM, Krishnamoorti R (2005) Thermal mismatch strains in sidewall functionalized carbon nanotube/polystyrene nanocomposites. J Chem Phys 122:124708–124714

    Article  CAS  Google Scholar 

  • Hu H, Zhao B, Hamon MA, Kamaras K, Itkis ME, Haddon RC (2003) Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J Am Chem Soc 125:14893–14900

    Article  CAS  Google Scholar 

  • Hudson JL, Casavant MJ, Tour JM (2004) Water-soluble, exfoliated, nonro** single-wall carbon nanotubes. J Am Chem Soc 126:11158–11159

    Article  CAS  Google Scholar 

  • Hwang GL, Shieh Y-T, Hwang KC (2004) Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv Funct Mater 14:487–491

    Article  CAS  Google Scholar 

  • Jia ZJ, Wang ZY, Xu C, Liang J, Wei BQ, Wu DH, Zhu SW (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A271:395–400

    CAS  Google Scholar 

  • Kamaras K, Itkis ME, Hu H, Zhao B, Haddon RC (2003) Covalent bond formation to a carbon nanotube metal. Science 301:1501–1503

    Article  CAS  Google Scholar 

  • Kawasaki S, Komatsu K, Okino F, Touhara H, Kataura H (2004) Fluorination of open- and closed-end single-walled carbon nanotubes. Chem Phys 6:1769–1772

    Article  CAS  Google Scholar 

  • Kim BM, Qian S, Bau HH (2005) Filling carbon nanotubes with particles. Nano Lett 5:873–878

    Article  CAS  Google Scholar 

  • Kong H, Gao C, Yan D (2004a) Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules 37:4022–4030

    Article  CAS  Google Scholar 

  • Kong H, Gao C, Yan D (2004b) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  CAS  Google Scholar 

  • Kong H, Li W, Gao C, Yan D, ** Y, Walton DRM, Kroto HW (2004c) Poly(N-isopropylacrylamide)-coated carbon nanotubes: temperature-sensitive molecular nanohybrids in water. Macromolecules 37:6683–6686

    Article  CAS  Google Scholar 

  • Kong H, Gao C, Yan D (2004d) Constructing amphiphilic polymer brushes on the convex surfaces of multi-walled carbon nanotubes by in situ atom transfer radical polymerization. J Mater Chem 14:1401–1405

    Article  CAS  Google Scholar 

  • Kong H, Luo P, Gao C, Yan D (2005) Polyelectrolyte-functionalized multiwalled carbon nanotubes: preparation, characterization and layer-by-layer self-assembly. Polymer 46:2472–2485

    Article  CAS  Google Scholar 

  • Koshio A, Yudasaka M, Zhang M, Iijima S (2001) A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett 1:361–363.

    Article  CAS  Google Scholar 

  • Kudin KN, Bettinger HF, Scuseria GE (2001) Fluorinated single-wall carbon nanotubes. Phys Rev B 63:045413–045421

    Article  CAS  Google Scholar 

  • Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784

    Article  CAS  Google Scholar 

  • Liu I-C, Huang H-M, Chang C-Y, Tsai H-C, Hsu C-H, Tsiang RC-C (2004a) Preparing a styrenic polymer composite containing well-dispersed carbon nanotubes: anionic polymerization of a nanotube-bound p-methylstyrene. Macromolecules 37:283–287

    Article  CAS  Google Scholar 

  • Liu Y, Tang J, **n JH (2004b) Fabrication of nanowires with polymer shells using treated carbon nanotube bundles as macro-initiators. Chem Commun 2828–2829

  • Liu Y, Yao Z, Adronov A (2005) Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules 38:1172–1179

    Article  CAS  Google Scholar 

  • Lu X, Chen Z (2005) Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (C60) and single-walled carbon nanotubes. Chem Rev 105:3643–3696

    Article  CAS  Google Scholar 

  • Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT Jr, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384

    Article  CAS  Google Scholar 

  • Murugesan S, Park T-J, Yang H, Mousa S, Linhardt RJ (2006) Blood compatible carbon nanotubes––nano-based neoproteoglycans. Langmuir 22:3461–3463

    Article  CAS  Google Scholar 

  • Nian J-N, Teng H (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110:4193–4198

    Article  CAS  Google Scholar 

  • Niu C, Sichel EK, Hoch R, Moy D, Tennet H (1997) High power electerochemical capacitors based on carbon nanotube. Appl Phys Lett 7:1480–1483

    Article  Google Scholar 

  • Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24:1070–1073

    Article  CAS  Google Scholar 

  • Petrov P, Lou X, Pagnoulle C, Jerome C, Calberg C, Jerome R (2004) Functionalization of multi-walled carbon nanotubes by electrografting of polyacrylonitrile. Macromol Rapid Commun 25:987–990

    Article  CAS  Google Scholar 

  • Qin S, Qin D, Ford WT, Resasco DE, Herrera JE (2004a) Functionalization of single-walled carbon nanotubes with polystyrene via grafting to and grafting from methods. Macromolecules 37:752–757

    Article  CAS  Google Scholar 

  • Qin S, Qin D, Ford WT, Herrera JT, Resasco DE, Bachilo SM, Weisman RB (2004b) Solubilization and purification of single-wall carbon nanotubes in water by in situ radical polymerization of sodium 4-styrenesulfonate. Macromolecules 37:3965–3967

    Article  CAS  Google Scholar 

  • Qin S, Qin D, Ford WT, Herrera JT, Resasco DE (2004c) Grafting of poly(4-vinylpyridine) to single-walled carbon nanotubes and assembly of multilayer films. Macromolecules 37:9963–9967

    Article  CAS  Google Scholar 

  • Qin S, Qin D, Ford WT, Zhang Y, Kotov NA (2005) Covalent cross-linked polymer/single-wall carbon nanotube multilayer films. Chem Mater 17:2131–2135

    Article  CAS  Google Scholar 

  • Robertson N, McGowan CA (2003) A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 32:96–103

    Article  CAS  Google Scholar 

  • Sainz R, Benito AM, Martinez MT, Galindo JF, Sotres J, Baro AM, Corraze B, Chauvet O, Maser WK (2005) Soluble self-aligned carbon nanotube/polyaniline composites. Adv Mater 17:278–281

    Article  CAS  Google Scholar 

  • Shaffer MSP, Koziol K (2002) Polystyrene grafted multi-walled carbon nanotubes. Chem Commun 2074–2075

  • Strano MS (2003) Probing chiral selective reactions using a revised Kataura Plot for the interpretation of single-walled carbon nanotube spectroscopy. J Am Chem Soc 125:16148–16153

    Article  CAS  Google Scholar 

  • Sung JH, Kim HS, ** H-J, Choi HJ, Chin I-J (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37:9899–9902

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  • Tong X, Liu C, Cheng H-M, Zhao H, Yang F, Zhang X (2004) Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J Appl Polym Sci 92:3697–3700

    Article  CAS  Google Scholar 

  • Touhara H, Okino F (2000) Property control of carbon materials by fluorination. Carbon 38:241–267

    Article  CAS  Google Scholar 

  • Touhara H, Inahara J, Mizuno T, Yokoyama Y, Okanao S, Yanagiuch K, Mukopadhyay I, Kawasaki S, Okino F, Shirai H, Xu WH, Kyotani T, Tomita A (2002) Property control of new forms of carbon materials by fluorination. J Fluor Chem 114:181–188

    Article  CAS  Google Scholar 

  • Tsang SC, Chen YK, Harris PJF, Green MLH (1994) A simple chemical method of opening and filling carbon nanotubes. Nature 372:159–162

    Article  CAS  Google Scholar 

  • Viswanathan G, Chakrapani N, Yang H, Wei B, Chung H, Cho K, Ryu CY, Ajayan PM (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Am Chem Soc 125:9258–9259

    Article  CAS  Google Scholar 

  • Wu W, Zhang S, Li Y, Li J, Liu L, Qin Y, Guo Z-X, Dai L, Ye C, Zhu D (2003) PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 36:6286–6288

    Article  CAS  Google Scholar 

  • **a H, Wang Q, Qiu G (2003) Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem Mater 15:3879–3886

    Article  CAS  Google Scholar 

  • Xu Y, Gao C, Kong H, Yan D, ** YZ, Watts PCP (2004) Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules 37:8846–8853

    Article  CAS  Google Scholar 

  • Yang Y, Wang X, Liu L, **e X, Yang Z, Li RKY, Mai Y-W (2007) Structure and photoresponsive behaviors of multiwalled carbon nanotubes grafted by polyurethanes containing azobenzene side chains. J Phys Chem C 111:11231–11239

    Article  CAS  Google Scholar 

  • Yao Z, Braidy N, Botton GA, Adronov A (2003) Polymerization from the surface of single-walled carbon nanotubes––preparation and characterization of nanocomposites. J Am Chem Soc 125:16015–16024

    Article  CAS  Google Scholar 

  • Yudanov NF, Okotrub AV, Shubin YV, Yudanova LI, Bulusheva LG, Chuvilin AL, Bonard JM (2002) Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem Mater 14:1472–1476

    Article  CAS  Google Scholar 

  • Yudasaka M, Zhang M, Jabs C, Iijima S (2001) Effect of an organic polymer in purification and cutting of single-wall carbon nanotubes. Appl Phys A 71:449–451

    Article  Google Scholar 

  • Zeng H, Gao C, Yan D (2006a) Poly(ε-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv Funct Mater 16:812–818

    Article  CAS  Google Scholar 

  • Zeng H, Gao C, Wang Y, Watts PCP, Kong H, Cui X, Yan D (2006b) In situ polymerization approach to multiwalled carbon nanotubes-reinforced nylon 1010 composites: Mechanical properties and crystallization behavior. Polymer 47:113–122

    Article  CAS  Google Scholar 

  • Zengin H, Zhou W, ** J, Czerw R, Smith DW Jr, Echegoyen L, Carroll DL, Foulger SH, Ballato J (2002) Carbon nanotube doped polyaniline. Adv Mater 14:1480–1483

    Article  CAS  Google Scholar 

  • Zhu J, Peng H, Rodriguez-Macias F, Margrave JL, Khabashesku VN, Imam AN, Lozano K, Barrera EV (2004) Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater 14:643–648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Adeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sepahvand, R., Adeli, M., Astinchap, B. et al. New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. J Nanopart Res 10, 1309–1318 (2008). https://doi.org/10.1007/s11051-008-9411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9411-2

Keywords

Navigation