IPN Systems for Cancer Therapy

  • Chapter
  • First Online:
Interpenetrating Polymer Network: Biomedical Applications

Abstract

Interpenetrating polymer network (IPN) is the innovative biomaterial that forms a breakthrough in the polymeric science. It is an intelligent polymeric multicomponent system which is biocompatible and biodegradable as well known for its specific drug-releasing tendency with response to a stimuli. It also possesses a dual-phase continuity other than interpenetrating at the molecular level. As a result, the IPN system is widely preferred in the field of cancer therapy with zero-order drug delivery method that retains minimized fluctuations. The potentiality of this IPN system makes it a vast research area to diagnose and treat cancer and related diseases. The complexity and synergistic nature of this IPN system overcome the drawbacks of the individual polymeric carriers for cancer diagnosis and treatment, thus making it as a unique drug delivery vehicle. The comprehensive view of IPN classification, methods of preparation, their applications in cancer treatment and mechanism of drug release and action are explicitly focussed on in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63:170–183

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri SA, Aminabhavi TM (2004) Formulation and evaluation of novel tableted chitosan microparticles for the controlled release of clozapine. J Microencapsul 21:709–718

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly (ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of Capecitabine. Int J Pharm 324:103–115

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Naik HS, Sherigara BS (2009) Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr Res 344:699–706

    Article  CAS  Google Scholar 

  • Alsuraifi A, Curtis A, Lamprou A, Hoskins C (2018) Stimuli responsive polymeric systems for cancer therapy. Pharmaceutics 10:1–17

    Article  CAS  Google Scholar 

  • Atyabi F, Firooze AM, Rassoul D et al (2008) Thiolated chitosan coated poly hydroxyethyl methacrylate nanoparticles: synthesis and characterization. Carbohydrate polymers 74:59–67

    Article  CAS  Google Scholar 

  • Auger FA, Rouabhia M, Goulet F et al (1998) Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 36:801–812

    Article  CAS  PubMed  Google Scholar 

  • Azuma C, Yasuda K, Tanabe Y et al (2007) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res A 81:373–380

    Article  PubMed  CAS  Google Scholar 

  • Babu CA, Prabhakar MN, Babu SA et al (2013) Development and characterization of semiIPN silver nanocomposite hydrogels for antibacterial applications. Int J Carbohydr Chem 243695:1–8

    Article  CAS  Google Scholar 

  • Banerjee S, Chaurasia G, Pal D et al (2010) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69:777–784

    CAS  Google Scholar 

  • Barber TA, Ho JE, De RA et al (2007) Periimplant bone formation and implant integration strength of peptide modified p(AAM-co-EG/AAC) interpenetrating polymer network coated titanium implants. J Biomed Mater Res A 80:306–320

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj V, Harit G, Kumar S (2012) Interpenetrating Polymer Network (IPN): novel approach in drug delivery. Int J Drug Dev Res 4(3):41–54

    CAS  Google Scholar 

  • Bhattacharya SS, Shukla S, Banerjee S et al (2013) Tailored IPN hydrogel bead of sodium carboxymethyl cellulose and sodium carboxymethyl xanthan gum for controlled delivery of diclofenac sodium. Polym Plast Technol and Engineering 52:795–805

    Article  CAS  Google Scholar 

  • Brayfield A (2014) Doxorubicin Martindale: the complete drug reference. Pharmaceutical Press, London, England, UK

    Google Scholar 

  • Burgess DJ, Hickey AJ (2007) Microsphere technology and applications. In: Swarbrick J (ed) Encyclopedia of pharmaceutical technology, 3rd edn. Informa healthcare, New York, pp 2328–2338

    Google Scholar 

  • Chamundeeswari M, Jeslin J, Verma ML (2018) Nanocarriers for drug delivery applications. Environ Chem Lett:1–17

    Google Scholar 

  • Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2:67–77

    Article  CAS  Google Scholar 

  • Chen Y, Ding D, Mao Z et al (2008) Synthesis of hydroxypropyl cellulose-poly (acrylic acid) particles with semiinterpenetrating polymer network structure. Biomacromolecules 9:2609–2614

    Article  CAS  PubMed  Google Scholar 

  • Chikh L, Delhorbe V, Fichet O (2011) (Semi-) Interpenetrating polymer networks as fuel cell membranes. J Membrane Sci 368:1–17

    Article  CAS  Google Scholar 

  • Chrastina A, Massey K, Schnitzer JE (2011) Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:421–437

    Article  CAS  PubMed  Google Scholar 

  • Dai YN, Li P, Zhang JP, Wang AQ, Wei Q (2008) A novel pH sensitive N-succinyl chitosan/alginate hydrogel bead for nifedipine delivery. Biopharm Drug Dispos 29:173–184

    Article  CAS  PubMed  Google Scholar 

  • Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  • Das SK, David SRN, Rajabalaya R et al (2011) Microencapsulation techniques and its practices. Int J Pharma Sci Tech 6:1–23

    Google Scholar 

  • Dickson JLB, Cunningham D (2004) Systemic treatment of gastric cancer. Eur J Gastroenterol Hepatol 16:255–263

    Article  CAS  PubMed  Google Scholar 

  • Dimendra JP, Pratik AM, Jatin JP (2012) Treatment of cancer by using Nanoparticles as a drug delivery. Int J Drug Dev & Res 4(1):14–27

    Google Scholar 

  • Dubin CH (2004) Special delivery: pharmaceutical companies aim to target their drugs with nano precision. Mech Eng Nanotechnol 126:10–12

    Google Scholar 

  • Frank JH, Luiza IH, Alessandro P et al (2013) Targeting cancer cells with controlled release nanocapsules based on a single aptamer. Chem Commun 49:1285

    Article  CAS  Google Scholar 

  • Gander B, Blanco-Prieto MJ, Thomasin C, Ch W, Hunkeler D (2002) Coacervation/Phase separation. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology, 2nd edn. Marcel Dekker, New York, pp 481–496

    Google Scholar 

  • George J, Onodera J, Miyata T (2008) Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J Biomed Mater Res A 87:1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  • Grassi M, Grassi G (2005) Mathematical modelling and controlled drug delivery: Matrix systems. Curr drug deliv 2(1):97–116

    Article  CAS  PubMed  Google Scholar 

  • Guilherme MR, de Moura MR, Radovanovic E et al (2005) Novel thermo-responsive membranes composed of interpenetrated polymer networks of alginate-Ca2+ and poly(N-isopropylacrylamide). Polymer 46:2668–2674

    Article  CAS  Google Scholar 

  • Gupta KC, Ravi-Kumar MNV (2000) Semi-interpenetrating polymer network beads of chitosan-glycine for controlled release of chlorpheniramine maleate. J Appl Polym Sci 76:672–683

    Article  CAS  Google Scholar 

  • Hago EE, Li X (2013) Interpenetrating polymer network hydrogels based on gelatin and PVA by biocompatible approaches: synthesis and characterization. Adv Mater Sci Eng 328763:1–9

    Article  CAS  Google Scholar 

  • Ho JE, Barber TA, Virdi AS et al (2007) The effect of enzymatically degradable IPN coatings on peri-implant bone formation and implant fixation. J Biomed Mater Res A 81:720–727

    Article  PubMed  CAS  Google Scholar 

  • Hood JD et al (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407

    Article  CAS  PubMed  Google Scholar 

  • Husseini GA, Christensen DA, Rapoport NY et al (2002) Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J Controll Release 83:303–305

    Article  CAS  Google Scholar 

  • Ignat L, Stanciu A (2003) Advanced polymers: interpenetrating polymer networks. In: Kulshreshtha AK, Vasile C (eds) Handbook of polymer blends and composites. Rapra Technology, Shrewsbury, pp 275–280

    Google Scholar 

  • Imabuchi R, Ohmiya Y, Kwon HJ et al (2011) Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord 12:200–213

    Article  CAS  Google Scholar 

  • Iqbal S, Rashid MH, Arab AS et al (2017) Encapsulation od anticancer drugs (5-Fluorouracil and Paclitaxel) into Polycaprolactone (PCL) nanofibers and in vitro testing for sustained and targeted therapy. J Biomed Nanotech 13(4):355–366

    Article  CAS  Google Scholar 

  • Isiklan N (2006) Controlled release of insecticide carbaryl from sodium alginate, sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl cellulose blend beads crosslinked with glutaraldehyde. J Applied Polymer Science 99:1310–1319

    Article  CAS  Google Scholar 

  • Jain A, Gupta Y, Jain SK (2007) Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci 10:86–128

    CAS  PubMed  Google Scholar 

  • Jain N, Sharma PK, Banik A et al (2011) Pharmaceutical and biomedical applications of interpenetrating polymer network. Curr Drug Deliv 6:263–270

    CAS  Google Scholar 

  • Jain N, Banik A, Gupta B (2013) Novel interpenetrating polymer network microspheres of Lepidium sativum and poly (vinyl alcohol) for the controlled release of simvastatin. Int J Pharm Pharm Sci 5:125–130

    CAS  Google Scholar 

  • Jaiswal M, Naz F, Dinda AK et al (2013) In vitro and in vivo efficacy of doxorubicin loaded biodegradable semiinterpenetrating hydrogel implants of poly (acrylic acid)/gelatin for post surgical tumor treatment. Biomed Mater 8:045004

    Article  PubMed  CAS  Google Scholar 

  • Jeyanthi R, Rao KP (1990) In vivo biocompatibility of collagen poly(hydroxyethyl methacrylate) hydrogels. Biomaterials 11:238–243

    Article  CAS  PubMed  Google Scholar 

  • Karabanova LV, Mikhalovsky SV, Lloyd AW et al (2005) Gradient semi-interpenetrating polymer networks based on polyurethane and poly(vinyl pyrrolidone). J Mater Chem 15:499–507

    Article  CAS  Google Scholar 

  • Kiguchi T, Aota H, Matsumoto A (2004) Approach to ideal simultaneous interpenetrating network formation via topological cross-links between polyurethane and polymethacrylate network polymer precursors. Macromolecules 37:8249–8255

    Article  CAS  Google Scholar 

  • Kim SJ, Park SJ, Kim IY, Shin MS, Kim SI (2002) Electric stimuli responses to poly (vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. J Appl Poly. Sci 86:2285–2289

    Article  CAS  Google Scholar 

  • Kim SJ, Yoon SG, Kim SI (2004) Synthesis and characterization of interpenetrating polymer network hydrogels composed of alginate and poly(diallyldimethylammonium chloride). J Appl Polym Sci 91:3705–3709

    Article  CAS  Google Scholar 

  • Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  CAS  PubMed  Google Scholar 

  • Kosmala JD, Henthorn DB, Brannon-Peppas L (2000) Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21:2019–2023

    Article  CAS  PubMed  Google Scholar 

  • Koziara JM et al (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269

    Article  CAS  PubMed  Google Scholar 

  • Kweon H, Yeo JH, Lee KG et al (2008) Semi interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing. Biomed Mater 3:034115

    Article  PubMed  CAS  Google Scholar 

  • Landfester K (2006) Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Sci 36:231–279

    Article  CAS  Google Scholar 

  • Lazko J, Popineau Y, Renard D, Legrand J (2004) Microcapsules based on glycinin-sodium dodecyl sulfate complex coacervation. J Microencapsul 21:59–70

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Fonge H, Hoang B, Reilly RM, Allen C (2010) The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nanoparticles. Mol Pharm 7:1195–1208

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang L, Ren B et al (2003) Preparation and characterization of collagen-hydroxyapatite composite used for bone tissue engineering scaffold. Artif Cells Blood Substit Immobil Biotechnol 31:435–448

    Article  CAS  PubMed  Google Scholar 

  • Liu YF, Huang KL, Peng DM et al (2007) Preparation and characterization of glutaraldehyde cross-linked O- carboxymethylchitosan microspheres for controlled delivery of pazufloxacin mesilate. J Biol Macromol 41:87–93

    Article  CAS  Google Scholar 

  • Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Gan X, Chen Y (2011) A novel pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies. Starch 63:503–511

    Article  CAS  Google Scholar 

  • Lohani A, Singh G, Bhattacharya S, Verma (2014) A interpenetrating polymer networks as innovative drug delivery systems. J Drug Del:1–11

    Article  CAS  Google Scholar 

  • Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Basu SK, Sa B (2010) Ca2+ion cross-linked interpenetrating network matrix tablets of polyacrylamide-grafted sodium alginate and sodium alginate for sustained release of diltiazem hydrochloride. Carbohydr Polym 82:867–873

    Article  CAS  Google Scholar 

  • Margaret T, Brahmaiah B, VamsiKrishna P, Revathi B, Nama S (2013) Interpenetrating polymer network (IPN) microparticles: An advancement in novel drug delivery system: a review. Int J Pharm Res Biosci 2:215–224

    Google Scholar 

  • Mayet N, Kumar P, Choonara YE et al (2014) Synthesis of a semi-interpenetrating polymer network as a bioactive curcumin film. AAPS Pharm Sci Tech 15:1476–1489

    Article  CAS  Google Scholar 

  • Meaney DF (1995) Mechanical properties of implantable biomaterials. Clin Podiatr Med Surg 12:363–384

    CAS  PubMed  Google Scholar 

  • Mohamed R, Choudhary V, Koul V (2011) Extended doxorubicin hydrochloride release from degradable gelatin-divinyl ester (DVE) interpenetrating polymer networks (IPN). Int J Pharm Pharm Sci 3:20–22

    CAS  Google Scholar 

  • Mohammadmajid S, Reihan M, Hossein M et al (2017) Engineered hydrogels in cancer therapy and Diagnosis. Trends Biotechnol 35(11):1074–1087

    Article  CAS  Google Scholar 

  • Mundargi RC, Patil SA, Kulkarni PV et al (2008) (2008) Sequential Interpenetrating Polymer network hydrogel microspheres of poly(methacrylic acid) and poly(vinyl alcohol) for oral controlled drug delivery to intestine. J Microencapsul 25:228–240

    Article  CAS  PubMed  Google Scholar 

  • Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1–17

    Article  CAS  PubMed  Google Scholar 

  • Murugesh S, Mandal BK (2012) A review on interpenetrating polymer network. Int J Pharm Pharm Sci 4:1–7

    Google Scholar 

  • Myung D, Waters D, Wiseman M et al (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacev A, Beni C, Bruno O, Shapiro B (2010) Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine 5:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Park JC, Hwang YS, Lee JE et al (2000) Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation and collagen synthesis. J Biomed Mater Res. 52:669–677

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Wei W, Li J, Liu Y et al (2015) Fabrication and characterization of a novel anticancer drug delivery system: Salecan/Poly(methacrylic acid) semi-interpenetrating polymer network hydrogel. ACS Biomater Sci Eng 1:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Raj V, Priya P, Renji R et al (2018) Folic acid–egg white coated IPN network of carboxymethyl cellulose and egg white nanoparticles for treating breast cancer. Iran polym J. https://doi.org/10.1007/s13726-018-0647-0

    Article  CAS  Google Scholar 

  • Rajput MS, Agrawal P (2010) Microspheres in cancer therapy. Indian J Cancer 47(4):458–468

    Article  CAS  PubMed  Google Scholar 

  • Rani M, Agarwal A, Maharana T et al (2010) A comparative study for interpenetrating polymeric network (IPN) of chitosan-amino acid beads for controlled drug release. Afr J Pharm Pharmacol 4:35–54

    CAS  Google Scholar 

  • Rao K, Kumar K, Rao MK et al (2008) Semi-IPN hydrogels based on poly(vinyl alcohol) for controlled release studies of chemotherapeutic agent and their swelling characteristics. Polym Bull 61:81–90

    Article  CAS  Google Scholar 

  • Reddy KM, Babu VR, Aminabhavi TM et al (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 107:2820–2829

    Article  CAS  Google Scholar 

  • Rodkate N, Wichai U, Boontha B et al (2010) Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr Polym 81:617–625

    Article  CAS  Google Scholar 

  • Saralidze K, Koole LH, Knetsch MLW (2010) Polymeric microspheres for medical applications. Materials 3(6):3537–3564

    Article  CAS  PubMed Central  Google Scholar 

  • Schoen FJ (1992) Antimineralization treatments for bioprosthetic heart valves: assessment of efficacy and safety. J Thorac Cardiovasc Surg 104:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Sekhar EC, Rao K, Raju R (2011) Chitosan/guar gum-g-acrylamide semi IPN microspheres for controlled release studies of 5-Fluorouracil. J Appl Pharm Sci 1:199–204

    Google Scholar 

  • Shanmugasundaram N, Ravichandran P, Reddy PN et al (2001) Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22:1943–1951

    Article  CAS  PubMed  Google Scholar 

  • Shanyue G, Di Y, Yangziwan W et al (2018) Excitation-dependent theranostic nanosheet for cancer treatment. Adv Healthcare Mater 1701123

    Google Scholar 

  • Sharma RA, Guy A, Hazel V et al (2007) Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol 25:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Prakash D, Ramesh B, Singh N, Mani T (2011) Biodegradable polymeric microspheres as drug carriers: a review. Ind J Novel Drug Del 3(2):70–82

    CAS  Google Scholar 

  • Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224:19–38

    Article  CAS  PubMed  Google Scholar 

  • Soman A, Mathew F, Chacko AJ, Alias M, Poosan G (2014) Interpenetrating polymer network (Ipn) – hydrogels. J Pharm Innov 3(8):59–66

    Google Scholar 

  • Somya G, Nayyar P, Akanksha B, Kumar SP (2015) Interpenetrating polymer network-based drug delivery systems: emerging applications and recent patents. Egypt Pharm J 14:75–86

    Article  Google Scholar 

  • Sperling LH (1977) Interpenetrating polymer networks and released materials. J Polym Sci Macromol Rev 12:141–180

    Article  CAS  Google Scholar 

  • Sperling LH (2005) Interpenetrating polymer networks. In: Mark HF (ed) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York, pp 272–311

    Google Scholar 

  • Sperling LH, Hu R (2003) Interpenetrating polymer networks. In: Utracki LA (ed) Polymer blends handbook. Springer, Dordrecht, pp 417–447

    Chapter  Google Scholar 

  • Stevenson CL, Santini JT, Langer R (2012) Reservoir-based drug delivery systems utilizing microtechnology. Adv Drug Deliv Rev 64(14):1590–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzoff M, Webster TJ (2016) Reducing bone cancer cell functions using selenium nanocomposites. J Biomed Mater Res Part A 104A:476–482

    Article  CAS  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, **a Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    CAS  Google Scholar 

  • Suzuki K (1994) Activated CD4+ T calls preferentially take up lipid microspheres, but resting cells do not. Clin Exp Immunol 99:479–485

    Article  Google Scholar 

  • Takahashi H, Chen R, Okamoto H, Danjo K (2005) Acetaminophen particle design using chitosan and a spray-drying technique. Chem Pharm Bull. 53:37–41

    Article  CAS  Google Scholar 

  • Takaoka K, Nakahara H, Yoshikawa H et al (1988) Ectopic bone induction on and in porous hydroxyapatite combined with collagen and bone morphogenetic protein. Clin Orthop 234:250–254

    CAS  Google Scholar 

  • Tan MS (2010) Simulation on transdermal patch for breast cancer therapy by using cosmol. Faculty of Chemical Engineering and Natural Resources, University of Malaysia http://umpir.ump.edu.my/id/eprint/3361/1/CD5597_TAN_MING_SIEN.pdf

  • Tigli RS, Gumusderelioglu M (2009) Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci Mater Med 20:699–709

    Article  CAS  PubMed  Google Scholar 

  • Tukaram SP, Nishigandha AN, Vidya KK et al (2017) Nanosponges: A Novel Targeted Drug Delivery for Cancer Treatment. Int J Adv Res 2(4):55–62

    Google Scholar 

  • Venkatesan P, Manavalan R, Valliappan K (2009) Microencapsulation: A vital technique in novel drug delivery system. J Pharm Sci & Res 1:26–35

    CAS  Google Scholar 

  • Vineet B, Gargi H, Sokindra K (2012) Interpenetrating Polymer Network (IPN): Novel approach in drug delivery. Int J Drug Dev & Res 4(3):41–54

    Google Scholar 

  • Von Burkersroda F, Schedl L, Göpferich A (2002) Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23(21):4221–4231

    Article  Google Scholar 

  • Vyas SP, Khar RK (2002) Targeted and controlled drug delivery: novel carrier systems, 1st edn. CBS Publishers and Distributors, New Delhi, pp 417–457

    Google Scholar 

  • Wada T, Mckee MD, Steitz S et al (1999) Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res 84:166–178

    Article  CAS  PubMed  Google Scholar 

  • Wu X, He G, Gu S, Hu Z, Yao (2007) Novel interpenetrating polymer network sulfonated poly (phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell. J Membr Sci 295:80–87

    Article  CAS  Google Scholar 

  • Yasuda K, Gong JP, Katsuyama Y, Nakayama A, Yoshie Tanabe Y, Kondo E et al (2005) Biomechanical properties of high-toughness double network hydrogels. Biomaterials 26:4468–4475

    Article  CAS  PubMed  Google Scholar 

  • Younghyun C, Jong BL, **kee H (2014) Controlled release of an anti-cancer drug from DNA structured nano-films. Sci Rep 4:4078

    Google Scholar 

  • Zhang JT, Huang SW, Cheng SX et al (2004a) Preparation and properties of poly (N-isopropylacrylamide)/poly(Nisopropylacrylamide) interpenetrating polymer networks for drug delivery. Polym Chem 42:1249–1254

    Article  CAS  Google Scholar 

  • Zhang XZ, Wu DQ, Chu CC (2004b) Synthesis, characterization and controlled drug release of the thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 25:3793–3805

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Wang TX, Liu W et al (2011) Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J Mater Chem 21:7240–7247

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the editors of Springer Nature, Singapore, for giving this opportunity to expose our ideas on IPN system.

Conflict of Interest

We have no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeslin, J., Dhanya, B.S., Chamundeeswari, M. (2020). IPN Systems for Cancer Therapy. In: Jana, S., Jana, S. (eds) Interpenetrating Polymer Network: Biomedical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-0283-5_9

Download citation

Publish with us

Policies and ethics

Navigation