Log in

Biocompatible APTES–PEG Modified Magnetite Nanoparticles: Effective Carriers of Antineoplastic Agents to Ovarian Cancer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles are particularly attractive for drug delivery applications because of their size-dependent superparamagnetism, low toxicity, and biocompatibility with cells and tissues. Surface modification of iron oxide nanoparticles with biocompatible polymers is potentially beneficial to prepare biodegradable nanocomposite-based drug delivery agents for in vivo and in vitro applications. In the present study, the bare (10 nm) and polyethylene glycol (PEG)–(3-aminopropyl)triethoxysilane (APTES) (PA) modified (17 nm) superparamagnetic iron oxide nanoparticles (SPIO NPs) were synthesized by coprecipitation method. The anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately encapsulated into the synthesized polymeric nanocomposites for localized targeting of human ovarian cancer in vitro. Surface morphology analysis by scanning electron microscopy showed a slight increase in particle size (27 ± 0.7 and 30 ± 0.45 nm) with drug loading capacities of 70 and 61.5 % and release capabilities of 90 and 93 % for the DOX- and PTX-AP-SPIO NPs, respectively (p < 0.001). Ten milligrams/milliliter DOX- and PTX-loaded AP-SPIO NPs caused a significant amount of cytotoxicity and downregulation of antiapoptotic proteins, as compared with same amounts of free drugs (p < 0.001). In vivo antiproliferative effect of present formulation on immunodeficient female Balb/c mice showed ovarian tumor shrinkage from 2,920 to 143 mm3 after 40 days. The present formulation of APTES–PEG-SPIO-based nanocomposite system of targeted drug delivery proved to be effective enough in order to treat deadly solid tumor of ovarian cancer in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeun, M., Lee, S., Kang, J. K., Tomitaka, A., & Kang, K. W. (2012). Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters, 100, 092406.

    Article  Google Scholar 

  2. Salehizadeh, H., Hekmatian, H., Sadeghi, M., & Kennedy, K. (2012). Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure. Journal of Nanobiotechnology, 10, 3–9.

    Article  CAS  Google Scholar 

  3. Cai, H., Xu, C., He, P., & Fang, Y. (2001). Nanoparticles: from theory to applications. Electroanalytical Chemistry, 510, 78–85.

    Article  CAS  Google Scholar 

  4. Wu, W., & Jiang, X. (2012). Long-circulating polymeric drug nanocarriers. Functional nanoparticles for bioanalysis, nanomedicine, and bioelectronic devices. Volume 2, ACS Symposium Series, Vol. 1113, ISBN: 9780841228283, Chapter 2, pp 27–36. 4, 5.

  5. Sun, C., Jerry, S., Lee, H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60, 1252–1265.

    Article  CAS  Google Scholar 

  6. Neuberger, T., Schopf, B., Hofmann, H., Hofmann, H., & von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293, 483–496.

    Article  CAS  Google Scholar 

  7. Torchilin, V. P. (2006). Multifunctional nanocarriers. Advanced Drug Delivery Reviews, 58, 1532–1555.

    Article  CAS  Google Scholar 

  8. Zhang, G., Lai, B. B., Zhou, Y. Y., Chen, B. A., & Wang, A. M. (2011). Fe3O4 nanoparticles with daunorubicin induce apoptosis through caspase 8-PARP pathway and inhibit K562 leukemia cell-induced tumor growth in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 595–603.

    Article  CAS  Google Scholar 

  9. Biranwar, Y. A., Bare, K. R., Mahajan, V. R., Sapate, M. K., & Baviskar, D. T. (2011). Erythrocyte drug delivery system. International Journal of Pharmaceutical Science Review and Research, 8, 124–128.

    CAS  Google Scholar 

  10. Inui, O., Teramura, Y., & Iwata, H. (2010). Retention dynamics of amphiphilic polymers PEG-lipids and PVA-Alkyl on the cell surface. ACS Applied Material Interfaces, 2, 1514–1520.

    Article  CAS  Google Scholar 

  11. Chao, Y., Su, A., Lin, Y., Hsu, W., & Huang, K. (2011). Synthesis and application of polyethylene glycol/vinyltriethoxy silane (PEG/VTES) copolymers. African Journal of Biotechnology, 10, 12754–12761.

    CAS  Google Scholar 

  12. Kitagawa, K., Kubota, K., Sueyoshi, K., & Otsuka, O. (2010). One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules. Journal of Pharmaceutical Biomedicine and Analysis, 53, 1272–1277.

    Article  CAS  Google Scholar 

  13. Cole, A. J., David, A. E., Wang, J., Galbán, C. J., Hill, H. L., & Yang, V. C. (2011). Polyethylene glycol modified, cross-linked starch coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials, 32, 2183–2193.

    Article  CAS  Google Scholar 

  14. **e, J., Xu, C., Kohler, N., Hou, Y., & Sun, S. (2007). Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Advanced Materials, 19, 3163–3166.

    Article  CAS  Google Scholar 

  15. Zhang, Y., Kohler, N., & Zhang, M. (2002). Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 23, 1553–1561.

    Article  CAS  Google Scholar 

  16. Yue-Jian, C., Juan, T., Fei, X., Jia-Bi, Z., Ning, G., & Yi-Hua, Z. (2010). Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Development and Industrial Pharmacy, 36, 1235–1244.

    Article  Google Scholar 

  17. Chen, Y. J., Tao, J., **ong, F., Zhu, J. B., Gu, N., & Geng, K. K. (2010). Characterization and in vitro cellular uptake of PEG coated iron oxide nanoparticles as MRI contrast agent. Pharmazie, 65, 481–486.

    CAS  Google Scholar 

  18. Mikhayaylvo, M., Kim, D. K., & Berry, C. C. (2004). BSA immobilization on amine functionalized superparamagnetic iron oxide nanoparticles. Chemical Materials, 16, 2344–2354.

    Article  Google Scholar 

  19. Naseri, G. M. (2012). The amounts of loaded DOX and PTX were 35 and 30.75 mg/g SPIO NPs. Carbohydrate Polymers, 90, 1265–1272.

    Article  Google Scholar 

  20. Jain, K. K. (2005). The role of nanobiotechnology in drug discovery. Drug Discovery Today, 10, 1435–1442.

    Article  CAS  Google Scholar 

  21. Wang, H., Shrestha, T. B., Basel, M. T., Dani, R. K., Seo, G., & Balivada, S. (2012). Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein Journal of Nanotechnology, 3, 444–455.

    Article  Google Scholar 

  22. Mahmoudi, M., Simchi, A., Imani, M., Milani, A. S., & Stroeve, P. (2009). An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology, 20, 225104.

    Article  Google Scholar 

  23. Fonseca, C., Simoes, S., & Gaspar, R. (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal of Controlled Release, 82, 273–286.

    Article  Google Scholar 

  24. Wang, Q., Zheng, X., Yang, L., Shi, Y., Gao, L., & Zhong, L. (2010). Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells. Journal of Experimental and Clinical Cancer Research, 29, 159–167.

    Article  CAS  Google Scholar 

  25. Lane, D., Côté, M., & Grondin, R. (2006). Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover of mature caspase-3. Molecular Cancer Therapy, 5, 509–521.

    Article  CAS  Google Scholar 

  26. Vanderhyden, B. C., Shaw, T. J., & Ethier, J. (2003). Animal models of ovarian cancer. Reproductive Biology and Endocrinology, 1, 67–77.

    Article  Google Scholar 

  27. Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature Reviews Cancer, 5, 161–171.

    Article  CAS  Google Scholar 

  28. Pardakhty, A., & Moazeni, E. (2013). Nano-niosomes in drug, vaccine and gene delivery: a rapid overview. Nanomedicine Journal, 1, 1–13.

    Google Scholar 

  29. Akbarzadeh, A., Mikaeili, H., Zarghami, N., Rahmati, M., Barkhordari, A., & Davaran, S. (2012). Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. International Journal of Nanomedicine, 7, 144–156.

    Google Scholar 

  30. Brullot, W., Reddy, N. K., Wouters, J., Valev, V. K., Goderis, B., & Vermant, J. (2012). Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 324, 1919–1925.

    Article  CAS  Google Scholar 

  31. Gubin, S. P. (2009). Magnetic Nanoparticles. Hoboken: Wiley.

    Book  Google Scholar 

  32. Sah, H. (1999). Stabilization of protein against methylene chloride water interface-induced denaturation and aggregation. Journal of Controlled Release, 58, 143–151.

    Article  CAS  Google Scholar 

  33. Yoo, H. S., & Park, T. G. (2000). In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. Journal of Controlled Release, 68, 419–431.

    Article  CAS  Google Scholar 

  34. Lu, A. H., Salabas, E. L., & Schuth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 46, 1222–1244.

    Article  CAS  Google Scholar 

  35. Wang, L. Y., Bai, J. W., Li, Y. J., & Huang, Y. (2008). Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angewandte Chemie International Edition, 47, 2439–2442.

    Article  CAS  Google Scholar 

  36. Hu, L., McArthur, C., & Jaffe, R. B. (2010). Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. British Journal of Cancer, 102, 1276–1283.

    Article  CAS  Google Scholar 

  37. Tsuruta, Y., Mandai, M., & Konishi, I. (2001). Combination effect of adenovirus-mediated pro-apoptotic bax gene transfer with cisplatin or paclitaxel treatment in ovarian cancer cell lines. European Journal of Cancer, 37, 531–541.

    Article  CAS  Google Scholar 

  38. Muscolini, M., Cianfrocca, R., & Sajeva, A. (2008). Trichostatin A up-regulates p73 and induces Bax-dependent apoptosis in cisplatin-resistant ovarian cancer cells. Molecular Cancer Therapeutics, 7, 1410–1419.

    Article  CAS  Google Scholar 

  39. Villedieu, M., Louis, M. H., & Dutoit, S. (2007). Absence of Bcl-xL downregulation in response to cisplatin is associated with chemoresistance in ovarian carcinoma cells. Gynecologic Oncology, 105, 31–44.

    Article  CAS  Google Scholar 

  40. Hine, C. M., Seluanov, A., & Gorbunova, V. (2012). Rad51 promoter-targeted gene therapy is effective for in vivo visualization and treatment of cancer. Molecular Therapy, 20, 347–355.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the Research Council of the University of Tehran, Tehran, Iran, to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahin Ahmadian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javid, A., Ahmadian, S., Saboury, A.A. et al. Biocompatible APTES–PEG Modified Magnetite Nanoparticles: Effective Carriers of Antineoplastic Agents to Ovarian Cancer. Appl Biochem Biotechnol 173, 36–54 (2014). https://doi.org/10.1007/s12010-014-0740-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0740-6

Keywords

Navigation