Log in

Minimum-Time and Minimum-Jerk Gait Planning in Joint Space for Assistive Lower Limb Exoskeleton

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Assistive lower limb exoskeleton robot has been developed to help paraplegic patients walk again. A gait planning method of this robot must be able to plan a gait based on gait parameters, which can be changed during the stride according to human intention or walking conditions. The gait is usually planned in cartesian space, which has shortcomings such as singularities that may occur in inverse kinematics equations, and the angular velocity of the joints cannot be entered into the calculations. Therefore, it is vital to have a gait planning method in the joint space. In this paper, a minimum-time and minimum-jerk planner is proposed for the robot joints. To do so, a third-order system is defined, and the cost function is introduced to minimize the jerk of the joints throughout the stride. The minimum time required is calculated to keep the angular velocity trajectory within the range specified by the motor’s maximum speed. Boundary conditions of the joints are determined to secure backward balance and fulfill gait parameters. Finally, the proposed gait planning method is tested by its implementation on the Exoped® exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Nas, K., Yazmalar, L., Şah, V., Aydın, A., & Öneş, K. (2015). Rehabilitation of spinal cord injuries. World Journal of Orthopedics, 6, 8–16.

    Article  Google Scholar 

  2. Kagirov, I., Kapustin, A., Kipyatkova, I., Klyuzhev, K., Kudryavcev, A., Kudryavcev, I., Loskutov, Y., Ryumin, D., & Karpov, A. (2021). Medical exoskeleton “Remotion” with an intelligent control system: Modeling, implementation, and testing. Simulation Modelling Practice and Theory, 107, 102200.

    Article  Google Scholar 

  3. Qiu, S., Pei, Z. C., Wang, C., & Tang, Z. Y. (2022). Systematic review on wearable lower extremity robotic exoskeletons for assisted locomotion. Journal of Bionic Engineering, 20, 436–469.

    Article  Google Scholar 

  4. Watanabe, H., Marushima, A., Kawamoto, H., Kadone, H., Ueno, T., Shimizu, Y., Endo, A., Hada, Y., Saotome, K., Abe, T., Yamazaki, M., Sankai, Y., Ishikawa, E., & Matsumura, A. (2019). Intensive gait treatment using a robot suit hybrid assistive limb in acute spinal cord infarction: Report of two cases. The Journal of Spinal Cord Medicine, 42, 395–401.

    Article  Google Scholar 

  5. Bach Baunsgaard, C., Vig Nissen, U., Katrin Brust, A., Frotzler, A., Ribeill, C., Kalke, Y. B., León, N., Gómez, B., Samuelsson, K., Antepohl, W., Holmström, U., Marklund, N., Glott, T., Opheim, A., Benito, J., Murillo, N., Nachtegaal, J., Faber, W., & Biering-Sørensen, F. (2018). Gait training after spinal cord injury: Safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso bionics. Spinal Cord, 56, 106–116.

    Article  Google Scholar 

  6. Raab, K., Krakow, K., Tripp, F., & Jung, M. (2016). Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: A single case study. Spinal Cord Series and Cases, 2, 1–3.

    Article  Google Scholar 

  7. Holanda, L. J., Silva, P. M., Amorim, T. C., Lacerda, M. O., Simão, C. R., & Morya, E. (2017). Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: A systematic review. Journal of NeuroEngineering and Rehabilitation, 14, 1–7.

    Article  Google Scholar 

  8. Mehr, J. K., Sharifi, M., Mushahwar, V. K., & Tavakoli, M. (2021). Intelligent locomotion planning with enhanced postural stability for lower-limb exoskeletons. IEEE Robotics and Automation Letters, 6, 7588–7595.

    Article  Google Scholar 

  9. Sharifi, M., Mehr, J. K., Mushahwar, V. K., & Tavakoli, M. (2022). Autonomous locomotion trajectory sha** and nonlinear control for lower limb exoskeletons. IEEE/ASME Transactions on Mechatronics, 27, 645–655.

    Article  Google Scholar 

  10. Zhuang, Y., Yao, S. W., Ma, C. M., & Song, R. (2018). Admittance control based on EMG-driven musculoskeletal model improves the human–robot synchronization. IEEE Transactions on Industrial Informatics, 15, 1211–1218.

    Article  Google Scholar 

  11. Baud, R., Manzoori, A. R., Ijspeert, A., & Bouri, M. (2021). Review of control strategies for lower-limb exoskeletons to assist gait. Journal of NeuroEngineering and Rehabilitation, 18, 1–34.

    Article  Google Scholar 

  12. Nguiadem, C., Raison, M., & Achiche, S. (2020). Motion planning of upper-limb exoskeleton robots: A review. Applied Sciences, 10, 7626.

    Article  Google Scholar 

  13. Neuhaus, P. D., Noorden, J. H., Craig, T. J., Torres, T., Kirschbaum, J., & Pratt, J. E. (2011) Design and evaluation of Mina: A robotic orthosis for paraplegics. In: 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, pp. 1–8.

  14. Sanz-Merodio, D., Cestari, M., Arevalo, J. C., & Garcia, E. (2012). Control motion approach of a lower limb orthosis to reduce energy consumption. International Journal of Advanced Robotic Systems, 9, 232.

    Article  Google Scholar 

  15. Wang, S. Q., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., Ivanenko, Y., La Scaleia, V., Sylos-Labini, F., Molinari, M., Tamburella, F., Pisotta, I., Thorsteinsson, F., Ilzkovitz, M., Gancet, J., Nevatia, Y., Hauffe, R., Zanow, F., & Van Der Kooij, H. (2014). Design and control of the MINDWALKER exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 277–286.

    Article  Google Scholar 

  16. Zhou, Z. K., Liang, B. H., Huang, G., Liu, B., Nong, J. J., & **e, L. H. (2020). Individualized gait generation for rehabilitation robots based on recurrent neural networks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 273–281.

    Article  Google Scholar 

  17. Ali, S. A., Annuar, K. A. M., & Miskon, M. F. (2016). Trajectory planning for exoskeleton robot by using cubic and quintic polynomial equation. International Journal of Applied Engineering Research, 11, 7943–7946.

    Google Scholar 

  18. Ren, H., Shang, W. F., Li, N. N., & Wu, X. Y. (2020). A fast parameterized gait planning method for a lower-limb exoskeleton robot. International Journal of Advanced Robotic Systems, 17, 1729881419893221.

    Article  Google Scholar 

  19. Huang, R., Cheng, H., Chen, Y., Chen, Q. M., Lin, X. C., & Qiu, J. (2016). Optimisation of reference gait trajectory of a lower limb exoskeleton. International Journal of Social Robotics, 8, 223–235.

    Article  Google Scholar 

  20. Vassallo, C., De Giuseppe, S., Piezzo, C., Maludrottu, S., Cerruti, G., D’Angelo, M. L., Gruppioni, E., Marchese, C., Castellano, S., Guanziroli, E., Molteni, F., Laffranchi, M., & De Michieli, L. (2020). Gait patterns generation based on basis functions interpolation for the TWIN lower-limb exoskeleton. 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 1778–1784.

  21. Chen, Q., Cheng, H., Yue, C. F., Huang, R., & Guo, H. L. (2018). Dynamic balance gait for walking assistance exoskeleton. Applied Bionics and Biomechanics. https://doi.org/10.1155/2018/7847014.eCollection2018

    Article  Google Scholar 

  22. Kagawa, T., Uno, Y. (2009). Gait pattern generation for a power-assist device of paraplegic gait. In: RO-MAN 2009-The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, pp. 633–638.

  23. Zheng, T. J., Zhu, Y., Zhang, Z. W., Zhao, S., Chen, J., & Zhao, J. (2018). Parametric gait online generation of a lower-limb exoskeleton for individuals with paraplegia. Journal of Bionic Engineering, 15, 941–949.

    Article  Google Scholar 

  24. Kazemi, J., & Ozgoli, S. (2019). Real-time walking pattern generation for a lower limb exoskeleton, implemented on the Exoped robot. Robotics and Autonomous Systems, 116, 1–23.

    Article  Google Scholar 

  25. Kagawa, T., Ishikawa, H., Kato, T., Sung, C., & Uno, Y. (2015). Optimization-based motion planning in joint space for walking assistance with wearable robot. IEEE Transactions on Robotics, 31, 415–424.

    Article  Google Scholar 

  26. Tsukahara, A., Hasegawa, Y., Eguchi, K., & Sankai, Y. (2014). Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 308–318.

    Article  Google Scholar 

  27. Ma, Y., Wu, X., Yang, S. X., Dang, C., Liu, D. X., Wang, C., Wang, C., & Chen, C. (2020). Online gait planning of lower-limb exoskeleton robot for paraplegic rehabilitation considering weight transfer process. IEEE Transactions on Automation Science and Engineering, 18, 414–425.

    Article  Google Scholar 

  28. Yuan, Y., Li, Z. J., Zhao, T., & Gan, D. (2019). DMP-based motion generation for a walking exoskeleton robot using reinforcement learning. IEEE Transactions on Industrial Electronics, 67, 3830–3839.

    Article  Google Scholar 

  29. Hwang, S. H., Sun, D. I., Han, J., & Kim, W. S. (2021). Gait pattern generation algorithm for lower-extremity rehabilitation–exoskeleton robot considering wearer’s condition. Intelligent Service Robotics, 14, 345–355.

    Article  Google Scholar 

  30. Mohamad, H., & Ozgoli, S. (2023). Online gait generator for lower limb exoskeleton robots: Suitable for level ground, slopes, stairs, and obstacle avoidance. Robotics and Autonomous Systems, 160, 104319.

    Article  Google Scholar 

  31. Niu, Q., Zhao, J. L., Liang, L., & **ng, J. (2023). Dynamic vertical climbing mechanism of Chinese Dragon-Li cats based on the linear inverted pendulum model. Journal of Bionic Engineering, 20, 136–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadjaad Ozgoli.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Inverted pendulum model

Appendix: Inverted pendulum model

Considering the origin of the coordinates \(\left(x,y\right)\) at the pivot point of the inverted pendulum shown in Fig. 5, the position and the linear velocity of CoM can be written as

$$\begin{array}{*{20}c} {x_{CoM} = - l\sin \left( {\theta_{h - sup} } \right){ ,}} & {\dot{x}_{CoM} = - l\dot{\theta }_{h - sup} \cos \left( {\theta_{h - sup} } \right)} \\ {y_{CoM} = l\cos \left( {\theta_{h - sup} } \right){ ,}} & {\dot{y}_{CoM} = - l\dot{\theta }_{h - sup} \sin \left( {\theta_{h - sup} } \right),} \\ \end{array}$$
(A.1)

where \({\dot{\theta }}_{h-sup}\) is the angular velocity. The dynamic model of the pendulum can be obtained easily as follows:

$$\ddot{\theta }_{h - sup} - w_{0}^{2} \theta_{h - sup} = 0{ ; }\sin \left( {\theta_{h - sup} } \right) \approx \theta_{h - sup} ,$$
(A.2)

where \(w_{0} = \sqrt{\frac{g}{l}}\) is the natural frequency of the pendulum, and \(\mathrm{g}\) is the acceleration of gravity. Solving Eq. (A.2) with an initial angle \({\theta }_{h-sup}\left({t}_{0}\right)\) and angular velocity \({\dot{\theta }}_{h-sup}\left({t}_{0}\right)\) gives Eq. (A.3)

$$\theta_{h - sup} \left( t \right) = \theta_{h - sup} \left( {t_{0} } \right)\left( {\frac{{e^{{w_{0} \left( {t - t_{0} } \right)}} + e^{{ - w_{0} \left( {t - t_{0} } \right)}} }}{2}} \right) + \frac{{\dot{\theta }_{h - sup} \left( {t_{0} } \right)}}{{w_{0} }}\left( {\frac{{e^{{w_{0} \left( {t - t_{0} } \right)}} - e^{{ - w_{0} \left( {t - t_{0} } \right)}} }}{2}} \right).$$
(A.3)

The initial angular velocity of the inverted pendulum \({\dot{\theta }}_{h-sup}\left({t}_{0}\right)\) that guides the pendulum from the initial angle \({\theta }_{h-sup}\left({t}_{0}\right)\) to the final angle \({\theta }_{h-sup}\left({t}_{f}\right)=0\) (CoM at the vertical line) with zero angular velocity during a period \(\left({t}_{f}-{t}_{0}\right)\) can be obtained as Eq. (A.4) by substituting \({\theta }_{h-sup}\left(t\right)=0\) at \(t={t}_{f}\) in Eq. (A.3)

$$\dot{\theta }_{h - sup} \left( {t_{0} } \right) = - \theta_{h - sup} \left( {t_{0} } \right)\left( {\frac{{e^{{w_{0} \left( {t_{f} - t_{0} } \right)}} + e^{{ - w_{0} \left( {t_{f} - t_{0} } \right)}} }}{{e^{{w_{0} \left( {t_{f} - t_{0} } \right)}} - e^{{ - w_{0} \left( {t_{f} - t_{0} } \right)}} }}} \right)w_{0} .$$
(A.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad, H., Ozgoli, S. & Motawej, F. Minimum-Time and Minimum-Jerk Gait Planning in Joint Space for Assistive Lower Limb Exoskeleton. J Bionic Eng 20, 2164–2178 (2023). https://doi.org/10.1007/s42235-023-00363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00363-9

Keywords

Navigation