A General Kinematics Model for Trajectory Planning of Upper Limb Exoskeleton Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11745))

Included in the following conference series:

  • 2910 Accesses

Abstract

Trajectory planning is a paramount requirement for upper limb rehabilitation robots because that can help stroke patients to receive rehabilitation training, especially in the implementation of activities of daily life. The patient-customized trajectory planning of the robot system is much more fit with human movement. This paper proposes an equivalent kinematics model of the upper limb, which covers all degrees of freedom of the upper limb. The trajectory planning based on this kinematics model is appropriate for upper limb exoskeleton rehabilitation or assistive robots. In addition, the proposed model has been experimentally validated on the prototype of an upper limb exoskeleton robot. The model of the exoskeleton is obtained by simplifying extra degrees of freedom of the kinematics model. And taking movement trajectory of the exoskeleton by cubic polynomial coincides with that by quintic polynomials, which proves that the approach can optimize the approach of trajectory planning. Furthermore, a significant reduction of trajectory generated operation can be achieved, with a consequent remarkable computational time-saving. Finally, results from taking things experiments with the exoskeleton are presented, which verify the usability of trajectory planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lauretti, C., Cordella, F., Guglielmelli, E., Zollo, L.: Learning by demonstration for planning activities of daily living in rehabilitation and assistive robotics. IEEE Robot. Autom. Lett. 2(3), 1375–1382 (2017). https://doi.org/10.1109/LRA.2017.2669369

    Article  Google Scholar 

  2. Harischandra, P.A.D., Abeykoon, A.M.H.S.: Development of an upper limb master-slave robot for bimanual rehabilitation. In: 2017 Moratuwa Engineering Research Conference (MERCon), Moratuwa, pp. 52–57 (2017). https://doi.org/10.1109/mercon.2017.7980455

  3. Soltani-Zarrin, R., Zeiaee, A., Langari, R., Robson, N.: Reference path generation for upper-arm exoskeletons considering scapulohumeral rhythms. In: 2017 ICORR, London, pp. 753–758 (2017). https://doi.org/10.1109/icorr.2017.8009338

  4. Xu, H., Ding, X.: Human-like motion planning for a 4-DOF anthropomorphic arm based on arm’s inherent characteristics. Int. J. Humanoid Robot. 14(4) (2017). https://doi.org/10.1142/s0219843617500050

    Article  Google Scholar 

  5. Fekrache, D., Guiatni, M.: Kinematics and design of a 5 DoF exoskeleton for the rehabilitation of the upper limb. In: 2015 4th ICEE, Boumerdes, pp. 1–5 (2015). https://doi.org/10.1109/intee.2015.7416752

  6. Rahman, M.H., et al.: Development of a whole arm wearable robotic exoskeleton for rehabilitation and to assist upper limb movements. Robotica 33(1), 19–39 (2015). https://doi.org/10.1017/s0263574714000034

    Article  Google Scholar 

  7. Guo, X., Wang, W., Yan, H.: The trajectory planning and simulation of exoskeleton upper limb rehabilitation robot. China: J. Qingdao Univ. (Nat. Sci. Edn.) 28(3), 65–69 (2015). https://doi.org/10.3969/j.issn.1006-1037.2015.08.14

  8. Tsai, B.C., Wang, W.W., Hsu, L.C., et al.: An articulated rehabilitation robot for upper limb physiotherapy and training. In: 2010 IEEE/RSJ, Taipei, pp. 1470–1475 (2010). https://doi.org/10.1109/iros.2010.5649567

  9. Miao, Q., Mcdaid, A., Zhang, M.: A three-stage trajectory generation method for robot-assisted bilateral upper limb training with subject-specific adaptation. Robot. Auton. Syst. 105, 38–46 (2018). https://doi.org/10.1016/j.robot.2018.03.010

    Article  Google Scholar 

  10. Schiele, A., van der Helm, F.C.T.: Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006). https://doi.org/10.1109/TNSRE.2006.881565

    Article  Google Scholar 

  11. Aili, Z.: Analysis and Simulation of Human Upper Limb Motion Based on MATLAB. Tian** University of Science and Technology, Tian** (2003)

    Google Scholar 

  12. Robson, P., Langari, R., Buchanan, J.J.: Experimental observations on the human arm motion planning under an elbow joint constraint. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, pp. 3870–3873 (2012)

    Google Scholar 

  13. Zhang, J., Cheah, C.C.: Passivity and stability of human–robot interaction control for upper-limb rehabilitation robots. IEEE Tran. Robot. 31(2), 233–245 (2015). https://doi.org/10.1109/tro.2015.2392451

    Article  Google Scholar 

  14. Guidali, M., Büchel, M., Klamroth, V., et al.: Trajectory planning in ADL tasks for an exoskeletal arm rehabilitation robot. In: Technically Assisted Rehabilitation, TAR 2009; 2nd European Conference, 18–19 March 2009, Deutsche Gesellschaft für Biomedizinische Technik, Berlin (2009)

    Google Scholar 

  15. Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Tran. Ind. Electron. 47(1), 140–149 (2000). https://doi.org/10.1109/41.824136

    Article  Google Scholar 

  16. Loureiro, R., Amirabdollahian, F., Top**, M.: Upper limb robot mediated stroke therapy—GENTLE/s approach. Auton. Robots 15(1), 35–51 (2003). https://doi.org/10.1023/a:1024436732030

    Article  Google Scholar 

  17. Loconsole, C., Banno, F., Frisoli, A., et al.: A new kinect-based guidance mode for upper limb robot-aided neurorehabilitation. In: IEEE/RSJ, Vilamoura, Algarve, Portugal, October 2012

    Google Scholar 

  18. Rahman, M.H., Kittel-Ouimet, T., Saad, M., et al.: Dynamic modeling and evaluation of a robotic exoskeleton for upper-limb rehabilitation. Int. J. Inf. Acquisition 8(1), 83–102 https://doi.org/10.1142/s0219878911002367

    Article  Google Scholar 

  19. Pronk, G.M.: The shoulder girdle, analysed and modelled kinematically (1991)

    Google Scholar 

  20. Helm, F.C.T.V.D.: A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27(5), 551–569 (1994). https://doi.org/10.1016/0021-9290(94)90065-5

    Article  Google Scholar 

  21. Maurel, W., et al.: A biomechanical musculoskeletal model of human upper limb for dynamic simulation. In: 5th IEEE EMBS International Summer School on Biomedical Imaging, Berder Island, pp. 121–136 (2002)

    Google Scholar 

  22. Klopcar, N., Lenarc, J.: Bilateral and unilateral shoulder girdle kinematics during humeral elevation. Clin. Biomech. 21(Suppl. 1), S20–S26 (2006). https://doi.org/10.1016/j.clinbiomech.2005.09.009

    Article  Google Scholar 

  23. Laitenberger, M., Raison, M., Périé, D., et al.: Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody Syst. Dyn. 33(4), 413–438 (2015). https://doi.org/10.1007/s11044-014-9421-z

    Article  MathSciNet  Google Scholar 

  24. Wenbin, C.: Human Upper Limb Kinematics Analysis and Humanoid Limb Design and Motion Planning. Huazhong University of Science and Technology, China (2012)

    Google Scholar 

  25. Bertomeu-Motos, A., et al.: Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. J. NeuroEngineering Rehabil. 15(10) (2018). https://doi.org/10.1186/s12984-018-0348-0

  26. Piña-Martínez, E., Ricardo, R., Salvador, L.M., et al.: Vision system-based design and assessment of a novel shoulder joint mechanism for an enhanced workspace upper limb exoskeleton. Appl. Bionics Biomech. 2018, 1–14 (2018). ID. 6019381. https://doi.org/10.1155/2018/6019381

    Article  Google Scholar 

  27. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Forward and inverse kinematics. In: Robot Modeling and Control, 2nd edn, pp. 65–103. Wiley, Hoboken (2005)

    Google Scholar 

  28. Lin, B., Zhang, H., Guo, Z., et al.: The movement characteristics of acromioclavicular joints in normal Chinese people. China: J. Clin. Orthopaedics 12(14), 451–454 (2009). https://doi.org/10.3969/j.issn.1008-0287.2009.04.038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliu Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, Q., **e, Q., Deng, Z., Yu, H. (2019). A General Kinematics Model for Trajectory Planning of Upper Limb Exoskeleton Robots. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11745. Springer, Cham. https://doi.org/10.1007/978-3-030-27529-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27529-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27528-0

  • Online ISBN: 978-3-030-27529-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation