Log in

Verification of neutron-induced fission product yields evaluated by a tensor decompsition model in transport-burnup simulations

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Neutron-induced fission is an important research object in basic science. Moreover, its product yield data are an indispensable nuclear data basis in nuclear engineering and technology. The fission yield tensor decomposition (FYTD) model has been developed and used to evaluate the independent fission product yield. In general, fission yield data are verified by the direct comparison of experimental and evaluated data. However, such direct comparison cannot reflect the impact of the evaluated data on application scenarios, such as reactor transport-burnup simulation. Therefore, this study applies the evaluated fission yield data in transport-burnup simulation to verify their accuracy and possibility of application. Herein, the evaluated yield data of \(^{235}\hbox {U}\) and \(^{239}\hbox {Pu}\) are applied in the transport-burnup simulation of a pressurized water reactor (PWR) and sodium-cooled fast reactor (SFR) for verification. During the reactor operation stage, the errors in pin-cell reactivity caused by the evaluated fission yield do not exceed 500 and 200 pcm for the PWR and SFR, respectively. The errors in decay heat and \(^{135}\)Xe and \(^{149}\)Sm concentrations during the short-term shutdown of the PWR are all less than 1%; the errors in decay heat and activity of the spent fuel of the PWR and SFR during the temporary storage stage are all less than 2\(\%\). For the PWR, the errors in important nuclide concentrations in spent fuel, such as \(^{90}\hbox {Sr}\), \(^{137}\hbox {Cs}\), \(^{85}\hbox {Kr}\), and \(^{99}\hbox {Tc}\), are all less than 6\(\%\), and a larger error of 37\(\%\) is observed on \(^{129}\hbox {I}\). For the SFR, the concentration errors of ten important nuclides in spent fuel are all less than 16\(\%\). A comparison of various aspects reveals that the transport-burnup simulation results using the FYTD model evaluation have little difference compared with the reference results using ENDF/B-VIII.0 data. This proves that the evaluation of the FYTD model may have application value in reactor physical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. O. Hahn, F. Strassmann, Über den nachweis und das verhalten der bei der bestrahlung des urans mittels neutronen entstehenden erdalkalimetalle. Naturwissenschaften 27, 11–15 (1939). https://doi.org/10.1007/BF01488241

    Article  ADS  MATH  Google Scholar 

  2. L. Meitner, O.R. Frisch, Disintegration of uranium by neutrons: a new type of nuclear reaction. Nature 143, 239–240 (1939). https://doi.org/10.1038/143239a0

    Article  ADS  MATH  Google Scholar 

  3. N. Schunck, L. Robledo, Microscopic theory of nuclear fission: a review. Rep. Prog. Phys. 79, 116301 (2016). https://doi.org/10.1088/0034-4885/79/11/116301

    Article  ADS  Google Scholar 

  4. M. Bender, R. Bernard, G. Bertsch et al., Future of nuclear fission theory. J. Phys. G Nucl. Part. Phys. 47, 113002 (2020). https://doi.org/10.1088/1361-6471/abab4f

    Article  Google Scholar 

  5. J. Hamilton, S. Hofmann, Y. Oganessian, Search for superheavy nuclei. Annu. Rev. Nucl. Part. Sci. 63, 383–405 (2013). https://doi.org/10.1146/annurev-nucl-102912-144535

    Article  ADS  Google Scholar 

  6. J.C. Pei, W. Nazarewicz, J.A. Sheikh et al., Fission barriers of compound superheavy nuclei. Phys. Rev. Lett. 102, 192501 (2009). https://doi.org/10.1103/PhysRevLett.102.192501

    Article  ADS  Google Scholar 

  7. M. Eichler, A. Arcones, A. Kelic et al., The role of fission in neutron star mergers and its impact on the r -process peaks. Astrophys. J. 808, 30 (2015). https://doi.org/10.1088/0004-637X/808/1/30

    Article  ADS  Google Scholar 

  8. T.A. Mueller, D. Lhuillier, M. Fallot et al., Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011). https://doi.org/10.1103/PhysRevC.83.054615

    Article  ADS  Google Scholar 

  9. L.A. Bernstein, D.A. Brown, A.J. Koning et al., Our future nuclear data needs. Annu. Rev. Nucl. Part. Sci. 69, 109–136 (2019). https://doi.org/10.1146/annurev-nucl-101918-023708

    Article  ADS  Google Scholar 

  10. D. Ramos, M. Caamaño, F. Farget et al., Insight into excitation energy and structure effects in fission from isotopic information in fission yields. Phys. Rev. C 99, 024615 (2019). https://doi.org/10.1103/PhysRevC.99.024615

    Article  ADS  Google Scholar 

  11. H.O. Denschlag, Independent fission yield measurements. Nucl. Sci. Eng. 94, 337–352 (1986). https://doi.org/10.13182/NSE86-A18345

    Article  ADS  Google Scholar 

  12. D. Brown, M. Chadwick, R. Capote et al., Endf/b-viii.0: the 8th major release of the nuclear reaction data library with cielo-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets 148, 1–142 (2018). https://doi.org/10.1016/j.nds.2018.02.001

    Article  ADS  Google Scholar 

  13. A.J. Plompen, O. Cabellos, C. De Saint Jean et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A 56, 181 (2020). https://doi.org/10.1140/epja/s10050-020-00141-9

    Article  ADS  Google Scholar 

  14. K. Shibata, O. Iwamoto, T. Nakagawa et al., JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48, 1–30 (2011). https://doi.org/10.1080/18811248.2011.9711675

    Article  ADS  Google Scholar 

  15. A. Bulgac, P. Magierski, K.J. Roche et al., Induced fission of Pu 240 within a real-time microscopic framework. Phys. Rev. Lett. 116, 122504 (2016). https://doi.org/10.1103/PhysRevLett.116.122504

    Article  ADS  Google Scholar 

  16. D. Regnier, N. Dubray, N. Schunck et al., Fission fragment charge and mass distributions in 239Pu (n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C 93, 054611 (2016). https://doi.org/10.1103/PhysRevC.93.054611

    Article  ADS  Google Scholar 

  17. W. Younes, D.M. Gogny, J.F. Berger, A microscopic theory of fission dynamics based on the generator coordinate method, vol. 950 (Springer, Berlin, 2019)

    Google Scholar 

  18. J. Randrup, P. Möller, Brownian shape motion on five-dimensional potential-energy surfaces: nuclear fission-fragment mass distributions. Phys. Rev. Lett. 106, 132503 (2011). https://doi.org/10.1103/PhysRevLett.106.132503

    Article  ADS  Google Scholar 

  19. J. Randrup, P. Möller, A.J. Sierk, Fission-fragment mass distributions from strongly damped shape evolution. Phys. Rev. C 84, 034613 (2011). https://doi.org/10.1103/PhysRevC.84.034613

    Article  ADS  Google Scholar 

  20. K. Pomorski, F.A. Ivanyuk, B. Nerlo-Pomorska, Mass distribution of fission fragments within the Born–Oppenheimer approximation. Eur. Phys. J. A 53, 59 (2017). https://doi.org/10.1140/epja/i2017-12250-5

    Article  ADS  Google Scholar 

  21. L.L. Liu, X.Z. Wu, Y.J. Chen et al., Study of fission dynamics with a three-dimensional Langevin approach. Phys. Rev. C 99, 044614 (2019). https://doi.org/10.1103/PhysRevC.99.044614

    Article  ADS  Google Scholar 

  22. Z.X. Fang, M. Yu, Y.G. Huang et al., Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021). https://doi.org/10.1007/s41365-021-00911-0

    Article  Google Scholar 

  23. U. Brosa, S. Grossmann, A. Müller, Nuclear scission. Phys. Rep. 197, 167–262 (1990). https://doi.org/10.1016/0370-1573(90)90114-H

    Article  ADS  Google Scholar 

  24. D. Gorodisskiy, K. Kovalchuk, S. Mulgin et al., Systematics of fragment mass yields from fission of actinide nuclei induced by the 5–200 mev protons and neutrons. Ann. Nucl. Energy 35, 238–245 (2008). https://doi.org/10.1016/j.anucene.2007.06.002

    Article  Google Scholar 

  25. M. Pahlavani, P. Mehdipour, Product yields for the photofission of 232Th, 234,238 U, 237Np, and 239,240,242 Pu actinides at various incident photon energies. Nucl. Sci. Tech. 29, 146 (2018). https://doi.org/10.1007/s41365-018-0482-1

    Article  Google Scholar 

  26. K.H. Schmidt, B. Jurado, C. Amouroux et al., General description of fission observables: GEF model code. Nucl. Data Sheets 131, 107–221 (2016). https://doi.org/10.1016/j.nds.2015.12.009

    Article  ADS  Google Scholar 

  27. Z. Niu, H. Liang, Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48–53 (2018). https://doi.org/10.1016/j.physletb.2018.01.002

    Article  ADS  Google Scholar 

  28. L. Neufcourt, Y. Cao, W. Nazarewicz et al., Neutron drip line in the Ca region from Bayesian model averaging. Phys. Rev. Lett. 122, 062502 (2019). https://doi.org/10.1103/PhysRevLett.122.062502

    Article  ADS  Google Scholar 

  29. C.W. Ma, D. Peng, H.L. Wei et al., Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  30. Z.P. Gao, Y.J. Wang, H.L. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1

    Article  Google Scholar 

  31. Q. Song, L. Zhu, J. Su, Target dependence of isotopic cross sections in the spallation reactions \(^{238}\) U+ p, d and \(^{9}\) Be at 1a gev. Chin. Phys. C. 46, 074108 (2022). https://doi.org/10.1088/1674-1137/ac6249

    Article  ADS  Google Scholar 

  32. E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative bayesian monte carlo for nuclear data evaluation. Nucl. Sci. Tech. 33, 50 (2022). https://doi.org/10.1007/s41365-022-01034-w

    Article  Google Scholar 

  33. H. Arahmane, E.M. Hamzaoui, Y. Ben Maissa et al., Neutron-gamma discrimination method based on blind source separation and machine learning. Nucl. Sci. Tech. 32, 18 (2021). https://doi.org/10.1007/s41365-021-00850-w

    Article  Google Scholar 

  34. Z.H. Wu, J.J. Bai, D.D. Zhang et al., Statistical analysis of helium bubbles in transmission electron microscopy images based on machine learning method. Nucl. Sci. Tech. 32, 54 (2021). https://doi.org/10.1007/s41365-021-00886-y

    Article  Google Scholar 

  35. T.S. Shang, J. Li, Z.M. Niu, Prediction of nuclear charge density distribution with feedback neural network. Nucl. Sci. Tech. 33, 153 (2022). https://doi.org/10.1007/s41365-022-01140-9

    Article  Google Scholar 

  36. B.C. Wang, M.T. Qiu, W. Chen et al., Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors. Nucl. Sci. Tech. 33, 131 (2022). https://doi.org/10.1007/s41365-022-01107-w

    Article  Google Scholar 

  37. A. Lovell, A. Mohan, P. Talou et al., Constraining fission yields using machine learning. EPJ Web Conf. 211, 04006 (2019). https://doi.org/10.1051/epjconf/201921104006

    Article  Google Scholar 

  38. Z.A. Wang, J. Pei, Y. Liu et al., Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett. 123, 122501 (2019). https://doi.org/10.1103/PhysRevLett.123.122501

    Article  ADS  Google Scholar 

  39. C.Y. Qiao, J.C. Pei, Z.A. Wang et al., Bayesian evaluation of charge yields of fission fragments of U 239. Phys. Rev. C 103, 034621 (2021). https://doi.org/10.1103/PhysRevC.103.034621

    Article  ADS  Google Scholar 

  40. L. Tong, R. He, S. Yan, Prediction of neutron-induced fission product yields by a straightforward k-nearest-neighbor algorithm. Phys. Rev. C 104, 064617 (2021). https://doi.org/10.1103/PhysRevC.104.064617

    Article  ADS  Google Scholar 

  41. J. Liu, P. Musialski, P. Wonka et al., Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013). https://doi.org/10.1109/TPAMI.2012.39

    Article  Google Scholar 

  42. X. Chen, Z. He, L. Sun, A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Transp. Res. Part C Emerg. Technol. 98, 73–84 (2019). https://doi.org/10.1016/j.trc.2018.11.003

    Article  Google Scholar 

  43. X. Chen, Z. Han, Y. Wang, et al., A general model for robust tensor factorization with unknown noise. ar**v:1705.06755

  44. Q. Song, L. Zhu, J. Su, et al., A tensor decomposition model for evaluating isotopic yield in neutron-induced fission. ar**v:2208.11815

  45. B.R. Betzler, F. Heidet, B. Feng et al., Modeling and simulation functional needs for molten salt reactor licensing. Nucl. Eng. Des. 355, 110308 (2019). https://doi.org/10.1016/j.nucengdes.2019.110308

    Article  Google Scholar 

  46. G. Chiba, M. Tsuji, T. Narabayashi et al., Important fission product nuclides identification method for simplified burnup chain construction: Physor 2014. J. Nucl. Sci. Technol. 52, 953–960 (2015). https://doi.org/10.1080/00223131.2015.1032381

    Article  Google Scholar 

  47. P.K. Romano, N.E. Horelik, B.R. Herman, et al., Openmc: a state-of-the-art monte carlo code for research and development. Annals of Nuclear Energy 82, 90–97 (2015). Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms. https://doi.org/10.1016/j.anucene.2014.07.048

  48. P.K. Romano, C.J. Josey, A.E. Johnson et al., Depletion capabilities in the openmc monte carlo particle transport code. Ann. Nucl. Energy 152, 107989 (2021). https://doi.org/10.1016/j.anucene.2020.107989

    Article  Google Scholar 

  49. M.L. Fensin, M.R. James, J.S. Hendricks et al., The new mcnp6 depletion capability. Proc. ICAPP 2012, 24–28 (2012)

    Google Scholar 

  50. J. Leppänen, M. Pusa, T. Viitanen et al., The serpent monte carlo code: Status, development and applications in 2013. Ann. Nucl. Energy 82, 142–150 (2015). https://doi.org/10.1016/j.anucene.2014.08.024

    Article  Google Scholar 

  51. K. Wang, Z. Li, D. She et al., Rmc-a monte carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). https://doi.org/10.1016/j.anucene.2014.08.048

    Article  Google Scholar 

  52. G.G. Davidson, T.M. Pandya, S.R. Johnson et al., Nuclide depletion capabilities in the shift monte carlo code. Ann. Nucl. Energy 114, 259–276 (2018). https://doi.org/10.1016/j.anucene.2017.11.042

    Article  Google Scholar 

  53. T. Shannon, J. Wheeler, G. Touvannas, Tgbla/panacea and casmo/microburn analyses of ge9b/ge10 fuel in the quad cities. Trans. Am. Nuclear Soc. 74 (1996). https://www.osti.gov/biblio/436981

  54. D. Knott, E. Wehlage, Description of the lancer02 lattice physics code for single-assembly and multibundle analysis. Nucl. Sci. Eng. 155, 331–354 (2007). https://doi.org/10.13182/NSE155-331

    Article  ADS  Google Scholar 

  55. H. Huria, R. Buechel, Recent improvements and new features in the westinghouse lattice physics codes. Trans. Am. Nuclear Soc. 72 (1995). https://www.osti.gov/biblio/186699

  56. P. Archier, S. Domanico, J. Palau, et al., PHYSOR 2016-unifying theory and experiments in the 21st Century, validation of a multi-purpose depletion chain for burnup calculation through tripoli-4 calculations and ifp perturbation method (2016)

  57. M.L. Fensin, M. Umbel, Testing actinide fission yield treatment in cinder90 for use in mcnp6 burnup calculations. Prog. Nucl. Energy 85, 719–728 (2015). https://doi.org/10.1016/j.pnucene.2015.09.001

    Article  Google Scholar 

  58. R.R. Yang, Y. Yuan, C. Hao et al., keff uncertainty quantification and analysis due to nuclear data during the full lifetime burnup calculation for a small-sized prismatic high temperature gas-cooled reactor. Nucl. Sci. Tech. 32, 127 (2021). https://doi.org/10.1007/s41365-021-00969-w

    Article  Google Scholar 

  59. A. Trkov, M. Herman, D. Brown, et al., Endf-6 formats manual. Brookhaven National Laboratory 80 (2012)

  60. T.L. Schulz, Westinghouse ap1000 advanced passive plant. Nucl. Eng. Des. 236, 1547–1557 (2006). https://doi.org/10.1016/j.nucengdes.2006.03.049

    Article  Google Scholar 

  61. N. Stauff, T. Kim, T. Taiwo et al., Benchmark for neutronic analysis of sodium-cooled fast reactor cores with various fuel types and core sizes. Tech. Rep., Organisation for Economic Co-Operation and Development (2016)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jun Su contributes comparably to the conceptualization and funding acuisition. Hui Guo contributes comparably to the conceptualization and funding acuisition. Qufei Song contributes mainly to investigation, methodology, resources, original draft writing, and review eding writing. Long Zhu contributes secondary to the original draft writing.

Corresponding author

Correspondence to Jun Su.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11875328, 12075327 and 12105170), the Key Laboratory of Nuclear Data foundation (No. JCKY2022201C157), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 22lgqb39), and the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology (No. NLK2020-02).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, QF., Zhu, L., Guo, H. et al. Verification of neutron-induced fission product yields evaluated by a tensor decompsition model in transport-burnup simulations. NUCL SCI TECH 34, 32 (2023). https://doi.org/10.1007/s41365-023-01176-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01176-5

Keywords

Navigation